Skip to main content

Remote Sensing of Water Quality

  • Chapter
  • First Online:
Lake Restoration Handbook
  • 1169 Accesses

Abstract

There is a need for increased monitoring of freshwater resources to effectively manage water quality. Remote sensing has the potential to substantially improve the spatiotemporal resolution of monitoring. Satellites sensors vary in temporal, spatial, radiometric, and spectral resolution. For remote sensing of optically active water constituents, there is no one definitive remote sensing solution for any lake or group of lakes, and the method needs to be tailored to the lake size and optical complexity of the system and the spectral and spatial resolution of the sensor. There are three general categories of sensors for spaceborne remote sensing, including hyperspectral sensors, broadband medium spatial resolution sensors, and narrow band low spatial resolution satellite sensors. The satellite sensor’s spatial resolution will determine the minimum lake size that can be monitored via remote sensing, while the sensor’s spectral resolution will determine the ability of the sensor to differentiate optically active constituents. Algorithms for remote sensing of water constituents can be divided into empirical, semi-analytical, or analytical methods. Empirical methods are applicable where there is a simple relationship between the constituent of interest (e.g., chlorophyll a) and reflectance and are therefore usually limited to lakes where only one water quality constituent dominates reflectance. Semi-analytical algorithms can often be applied in place of empirical algorithms and have a number of advantages. Semi-analytical algorithms can be developed independently of in situ samples, are applicable to multiple satellite sensors, have greater spatiotemporal applicability, and are designed to determine more than one water quality parameter simultaneously. Analytical methods are based on radiative transfer modelling or simplifications thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan MG, Hamilton DP, Hicks BJ, Brabyn L (2011) Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. Int J Remote Sens 32:2037–2055

    Article  Google Scholar 

  • Allan MG, Hamilton DP, Hicks B, Brabyn L (2015) Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat. Environ Monit Assess 187:364

    Article  PubMed  CAS  Google Scholar 

  • Aurin DA, Dierssen HM (2012) Advantages and limitations of ocean color remote sensing in CDOM-dominated, mineral-rich coastal and estuarine waters. Remote Sens Environ 125:181–197

    Article  Google Scholar 

  • Babin M (2003) Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res 108:3211

    Article  Google Scholar 

  • Babin M, Therriault J-C, Legendre L, Condal A (1993) Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production. Limnol Oceanogr 38:154–177

    Article  Google Scholar 

  • Bailey SW, Franz BA, Werdell PJ (2010) Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt Express 18:7521

    Article  PubMed  Google Scholar 

  • Binding CE, Jerome JH, Bukata RP, Booty WG (2010) Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery. Int J Remote Sens 31:5239–5255

    Article  Google Scholar 

  • Binding CE, Greenberg TA, Jerome JH, Bukata RP Letourneau G (2011) An assessment of MERIS algal products during an intense bloom in lake of the woods. J Plankton Res 33:793–806

    Article  Google Scholar 

  • Blondeau-Patissier D, Brando VE, Oubelkheir K, Dekker AG, Clementson LA, Daniel P (2009) Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia. J Geophys Res 114:C05003

    Article  Google Scholar 

  • Brando VE, Dekker AG, Park YJ, Schroeder T (2012) Adaptive semianalytical inversion of ocean color radiometry in optically complex waters. Appl Opt 51:2808

    Article  PubMed  Google Scholar 

  • Brezonik PL, Olmanson LG, Finlay JC, Bauer ME (2015) Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens Environ 157:199–215

    Article  Google Scholar 

  • Bricaud A (2004) Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J Geophys Res 109:C11010

    Article  CAS  Google Scholar 

  • Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53

    Article  CAS  Google Scholar 

  • Brivio PA, Giardino C, Zilioli E (1997) The satellite derived optical information for the comparative assessment of lacustrine water quality. Sci Total Environ 196:229–245

    Article  Google Scholar 

  • Budd JW, Warrington DS (2004) Satellite-based sediment and chlorophyll a estimates for Lake Superior. J Great Lakes Res 30:459–466

    Article  Google Scholar 

  • Bukata RP, Bruton JE, Jerome JH (1985) Application of direct measurements of optical parameters to the estimation of lake water quality indicators. Inland Waters Directorate, Burlington, ON, Canada

    Google Scholar 

  • Bukata RP, Jerome JH, Kondratyev KY, Pozdnyakov DV (1991) Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga. J Great Lakes Res 17:461–469

    Article  CAS  Google Scholar 

  • Bukata RP, Jerome JH, Kondratyev KY, Pozdnyakov DV (1995) Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton, FL

    Google Scholar 

  • Bulgarelli B, Kisselev VB, Roberti L (1999) Radiative transfer in the atmosphere-ocean system: the finite-element method. Appl Opt 38:1530–1542

    Article  CAS  PubMed  Google Scholar 

  • Campbell G, Phinn SR, Dekker AG, Brando VE (2011) Remote sensing of water quality in an Australian tropical freshwater impoundment using matrix inversion and MERIS images. Remote Sens Environ 115:2402–2414

    Article  Google Scholar 

  • Carder KL, Steward RG, Harvey GR, Ortner PB (1989) Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnol Oceanogr 34:68–81

    Article  CAS  Google Scholar 

  • Carder KL, Chen FR, Lee ZP, Hawes SK, Kamykowski D (1999) Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. J Geophys Res Oceans 104:5403–5421

    Article  Google Scholar 

  • Chávez PSJ (1996) Image-based atmospheric corrections – revisited and improved. Photogramm Eng Remote Sens 62:1025–1036

    Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Published on behalf of UNESCO, WHO and UNEP by E&FN Spon, London

    Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97

    Article  Google Scholar 

  • Davies-Colley RJ, Vant WN, Smith DG (1993) Colour and clarity of natural waters. Ellis Horwood, London

    Google Scholar 

  • Dekker AG, Peters SWM (1993) The use of the thematic mapper for the analysis of eutrophic lakes: a case study in the Netherlands. Int J Remote Sens 14:799–821

    Article  Google Scholar 

  • Dekker AG, Hoogenboom HJ, Goddijn LM, Malthus TJM (1997) The relation between inherent optical properties and reflectance spectra in turbid inland waters. Remote Sens Rev 15:59–74

    Article  Google Scholar 

  • Dekker AG, Vos RJ, Peters SW (2001) Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the Southern Frisian lakes. Sci Total Environ 268:197–214

    Article  CAS  PubMed  Google Scholar 

  • Dekker AG, Brando VE, Anstee JM, Pinnel M, Kutser T, Hoogenboom EJ, Peters S, Pasterkamp R, Vos R, Olbert C, Malthus TJM (2002a) Imaging spectrometry of water. In: van der Meer FD, de Jong SM (eds) Imaging spectrometry: basic principles and prospective applications. Springer, Dordrecht, pp 307–359

    Chapter  Google Scholar 

  • Dekker AG, Vos RJ, Peters SWM (2002b) Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int J Remote Sens 23:15–35

    Article  Google Scholar 

  • Devred E, Sathyendranath S, Stuart V, Platt T (2011) A three component classification of phytoplankton absorption spectra: application to ocean-color data. Remote Sens Environ 115:2255–2266

    Article  Google Scholar 

  • Doerffer R, Schiller H (2007) The MERIS Case 2 water algorithm. Int J Remote Sens 28:517–535

    Article  Google Scholar 

  • Dubelaar GB, Visser JW, Donze M (1987) Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles. Cytometry 8:405–412

    Article  CAS  PubMed  Google Scholar 

  • Fell F, Fischer J (2001) Numerical simulation of the light field in the atmosphere–ocean system using the matrix-operator method. J Quant Spectrosc Radiat Transf 69:351–388

    Article  CAS  Google Scholar 

  • Fichot CG, Downing BD, Bergamaschi BA, Windham-Myers L, Marvin-DiPasquale M, Thompson DR, Gierach MM (2016) High-resolution remote sensing of water quality in the San Francisco Bay–Delta Estuary. Environ Sci Technol 50:573–583

    Article  CAS  PubMed  Google Scholar 

  • Fischer J, Grassl H (1984) Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix-operator approach. Appl Opt 23:1032

    Article  CAS  PubMed  Google Scholar 

  • Gallegos CL, Davies-Colley RJ, Gall M (2008) Optical closure in lakes with contrasting extremes of reflectance. Limnol Oceanogr 53:2021–2034

    Article  Google Scholar 

  • Giardino C, Pepe M, Brivio PA, Ghezzi P, Zilioli E (2001) Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Sci Total Environ 268:19–29

    Article  CAS  PubMed  Google Scholar 

  • Giardino C, Brando VE, Dekker AG, Strömbeck N, Candiani G (2007) Assessment of water quality in Lake Garda (Italy) using hyperion. Remote Sens Environ 109:183–195

    Article  Google Scholar 

  • Gitelson AA, Yacobi YZ, Karnieli A, Kress N (1995) Remote estimation of chlorophyll concentration in polluted marine waters in Haifa Bay, Southeastern Mediterranean. In: Proceedings of SPIE 2503, 21 September 1995, Air Toxics and Water Monitoring, pp 44–54

    Google Scholar 

  • Gitelson A, Dallolmo G, Moses W, Rundquist DC, Barrow T, Fisher TR, Gurlin D, Holz J (2008) A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sens Environ 112:3582–3593

    Article  Google Scholar 

  • Gons HJ, Auer MT, Effler SW (2008) MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sens Environ 112:4098–4106

    Article  Google Scholar 

  • Gordon HR, Brown OB (1973) Irradiance reflectivity of a flat ocean as a function of its optical properties. Appl Opt 12:1549–1551

    Article  CAS  PubMed  Google Scholar 

  • Gordon HR, Morel A (1983) Remote assessment of ocean color for interpretation of satellite visible imagery: a review. Springer, New York

    Book  Google Scholar 

  • Gordon HR, Brown JW, Brown OB, Evans RH, Brown JW, Smith RC, Baker KS, Clark DK (1988) A semianalytic radiance model of ocean color. J Geophys Res 93:10909–10924

    Article  Google Scholar 

  • Goyens C, Jamet C, Schroeder T (2013) Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters. Remote Sens Environ 131:63–75

    Article  Google Scholar 

  • Guanter L, Ruiz-Verdú A, Odermatt D, Giardino C, Simis S, Estelles V, Heege T, Dominguez-Gomez J-A, Moreno J (2010) Atmospheric correction of ENVISAT/MERIS data over inland waters: validation for European lakes. Remote Sens Environ 114:467–480

    Article  Google Scholar 

  • Gurlin D, Gitelson AA, Moses WJ (2011) Remote estimation of chl-a concentration in turbid productive waters – return to a simple two-band NIR-red model? Remote Sens Environ 115:3479–3490

    Article  Google Scholar 

  • Han LH (1997) Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters. Photogramm Eng Remote Sens 63:701–705

    Google Scholar 

  • Heege T, Fischer J (2004) Mapping of water constituents in Lake Constance using multispectral airborne scanner data and a physically based processing scheme. Can J Remote Sens 30:77–86

    Article  Google Scholar 

  • Heim B (2005) Qualitative and quantitative analyses of Lake Baikal’s surface-waters using ocean colour satellite data (SeaWiFS). Ph.D. Thesis, University of Potsdam, Germany

    Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Article  Google Scholar 

  • Horion S, Bergamino N, Stenuite S, Descy JP, Plisnier PD, Loiselle SA, Cornet Y (2010) Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa. Remote Sens Environ 114:781–791

    Article  Google Scholar 

  • Hunter PD, Tyler AN, Carvalho L, Codd GA, Maberly SC (2010) Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens Environ 114:2705–2718

    Article  Google Scholar 

  • Kallio K (2012) Water quality estimation by optical remote sensing in boreal lakes. Ph.D. Thesis, University of Helsinki, Finland

    Google Scholar 

  • Kirk JTO (1981) Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters. Mar Freshw Res 32:517–532

    Article  Google Scholar 

  • Kirk JTO (2010) Light and photosynthesis in aquatic ecosystems, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kisselev VB, Roberti L, Perona G (1995) Finite-element algorithm for radiative transfer in vertically inhomogeneous media: numerical scheme and applications. Appl Opt 34:8460

    Article  CAS  PubMed  Google Scholar 

  • Kloiber SM, Brezonik PL, Olmanson LG, Bauer ME (2002) A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens Environ 82:38–47

    Article  Google Scholar 

  • Koponen S, Kallio K, Pulliainen J, Vepsalainen J, Pyhalahti T, Hallikainen M (2004) Water quality classification of lakes using 250-m MODIS data. IEEE Geosci Remote Sens Lett 1:287–291

    Article  Google Scholar 

  • Kostadinov TS, Siegel DA, Maritorena S (2010) Global variability of phytoplankton functional types from space: assessment via the particle size distribution. Biogeosci Discuss 7:4295–4340

    Article  Google Scholar 

  • Kotchenova SY, Vermote EF, Levy R, Lyapustin A (2008) Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. Appl Opt 47:2215–2226

    Article  PubMed  Google Scholar 

  • Lee Z, Carder KL, Arnone RA (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt 41:5755

    Article  PubMed  Google Scholar 

  • Lesht BM, Barbiero RP, Warren GJ (2012) Satellite ocean color algorithms: a review of applications to the Great Lakes. J Great Lakes Res 38:49–60

    Article  CAS  Google Scholar 

  • Li H, Budd JW, Green S (2004) Evaluation and regional optimization of bio-optical algorithms for central Lake Superior. J Great Lakes Res 30:443–458

    Article  Google Scholar 

  • Li L, Li L, Shi K, Li Z, Song K (2012) A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. Sci Total Environ 435–436:141–150

    Article  PubMed  CAS  Google Scholar 

  • Li L, Li L, Song K, Li Z (2013) An inversion model for deriving inherent optical properties of inland waters: establishment, validation and application. Remote Sens Environ 135:150–166

    Article  Google Scholar 

  • Li L, Li L, Song K (2015) Remote sensing of freshwater cyanobacteria: an extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin. Remote Sens Environ 157:9–23

    Article  CAS  Google Scholar 

  • Lillesand TM, Johnson WL, Deuell RL, Lindstrom OM, Meisner DE (1983) Use of Landsat data to predict the trophic state of Minnesota lakes. Photogramm Eng Remote Sens 49:219–229

    Google Scholar 

  • Lobo FL, Costa MPF, Novo EMLM (2015) Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sens Environ 157:170–184

    Article  Google Scholar 

  • Lymburner L, Botha E, Hestir E, Anstee J, Sagar S, Dekker A, Malthus T (2016) Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens of Environ 185:108–118

    Article  Google Scholar 

  • Maritorena S, Siegel DA, Peterson AR (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Opt 41:2705

    Article  PubMed  Google Scholar 

  • Matthews M (2011) A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int J Remote Sens 32:37–41

    Article  Google Scholar 

  • Matthews MW, Odermatt D (2015) Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters. Remote Sens Environ 156:374–382

    Article  Google Scholar 

  • Matthews MW, Bernard S, Winter K (2010) Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens Environ 114:2070–2087

    Article  Google Scholar 

  • Matthews MW, Bernard S, Robertson L (2012) An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens Environ 124:637–652

    Article  Google Scholar 

  • Metsamaa L, Kutser T, Strömbeck N (2006) Recognising cyanobacterial blooms based on their optical signature: a modelling study. Boreal Environ Res 11:493–506

    CAS  Google Scholar 

  • Mishra S, Mishra DR (2014) A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms. Environ Res Lett 9:114003

    Article  CAS  Google Scholar 

  • Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic Press, San Diego, CA

    Google Scholar 

  • Moisan JR, Moisan TAH, Linkswiler MA (2011) An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra. J Geophys Res 116:C09018

    Article  CAS  Google Scholar 

  • Morel A, Prieur L (1977) Analysis of variations in ocean color1. Limnol Oceanogr 22:709–722

    Article  Google Scholar 

  • Mouw CB, Chen H, McKinley GA, Effler S, O’Donnell D, Perkins MG, Strait C (2013) Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties. J Geophys Res Oceans 118:1696–1714

    Article  Google Scholar 

  • Odermatt D, Heege T, Nieke J, Kneubühler M, Itten K (2008) Water quality monitoring for Lake Constance with a physically based algorithm for MERIS data. Sensors 8:4582–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odermatt D, Giardino C, Heege T (2010) Chlorophyll retrieval with MERIS Case-2-Regional in perialpine lakes. Remote Sens Environ 114:607–617

    Article  Google Scholar 

  • Odermatt D, Gitelson A, Brando VE, Schaepman M (2012a) Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens Environ 118:116–126

    Article  Google Scholar 

  • Odermatt D, Pomati F, Pitarch J, Carpenter J, Kawka M, Schaepman M, Wüest A (2012b) MERIS observations of phytoplankton blooms in a stratified eutrophic lake. Remote Sens Environ 126:232–239

    Article  Google Scholar 

  • Olmanson LG, Bauer ME, Brezonik PL (2008) A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens Environ 112:4086–4097

    Article  Google Scholar 

  • Olmanson LG, Brezonik PL, Bauer ME (2013) Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota. Remote Sens Environ 130:254–265

    Article  Google Scholar 

  • Oyama Y, Matsushita B, Fukushima T, Nagai T, Imai A (2007) A new algorithm for estimating chlorophyll-aconcentration from multi-spectral satellite data in case II waters: a simulation based on a controlled laboratory experiment. Int J Remote Sens 28:1437–1453

    Article  Google Scholar 

  • Oyama Y, Matsushita B, Fukushima T, Imai A (2009) Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data. ISPRS J Photogramm Remote Sens 64:73–85

    Article  Google Scholar 

  • Palmer SCJ, Odermatt D, Hunter PD, Brockmann C, Présing M, Balzter H, Tóth VR (2015) Satellite remote sensing of phytoplankton phenology in Lake Balaton using 10 years of MERIS observations. Remote Sens Environ 158:441–452

    Article  Google Scholar 

  • Pinkerton MH, Moore GF, Lavender SJ, Gall MP, Oubelkheir K, Richardson KM, Boyd PW, Aiken J (2006) A method for estimating inherent optical properties of New Zealand continental shelf waters from satellite ocean colour measurements. N Z J Mar Freshw Res 40:227–247

    Article  CAS  Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36:8710–8723

    Article  CAS  PubMed  Google Scholar 

  • Preisendorfer RW (1976) Hydrologic optics. Environmental Research. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory, Honolulu

    Google Scholar 

  • Purss MBJ, Lewis A, Oliver S, Ip A, Sixsmith J, Evans B, Edberg R, Frankish G, Hurst L, Chan T (2015) Unlocking the Australian Landsat archive – from dark data to high performance data infrastructures. GeoResJ 6:135–140

    Article  Google Scholar 

  • Rose KC, Greb SR, Diebel M, Turner MG (2017) Annual precipitation regulates spatial and temporal drivers of lake water clarity. Ecol Appl 27:632–643

    Article  PubMed  Google Scholar 

  • Ruddick KG, Ovidio F, Rijkeboer M (2000) Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl Opt 39:897

    Article  CAS  PubMed  Google Scholar 

  • Rudorff C (2006) Spectral mixture analysis for water quality assessment over the Amazon floodplain using hyperion/EO-1 images. AMBIAGUA 1:65–79

    Google Scholar 

  • Ryan JP, Davis CO, Tufillaro NB, Kudela RM, Gao B-C (2014) Application of the hyperspectral imager for the coastal ocean to phytoplankton ecology studies in Monterey Bay, CA, USA. Remote Sens 6:1007–1025

    Article  Google Scholar 

  • Santer R, Schmechtig C (2000) Adjacency effects on water surfaces: primary scattering approximation and sensitivity study. Appl Opt 39:361

    Article  CAS  PubMed  Google Scholar 

  • Sawaya K, Olmanson LG, Heinert NJ, Bauer ME (2003) Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sens Environ 88:144–156

    Article  Google Scholar 

  • Schroeder T, Behnert I, Schaale M, Fischer J, Doerffler R (2007) Atmospheric correction algorithm for MERIS above case-2 waters. Int J Remote Sens 28:1469–1486

    Article  Google Scholar 

  • Shuchman R, Korosov A, Hatt C, Pozdnyakov D, Means J, Meadows G (2006) Verification and application of a bio-optical algorithm for Lake Michigan using SeaWiFS: a 7-year inter-annual analysis. J Great Lakes Res 32:258–279

    Article  CAS  Google Scholar 

  • Stramski D, Boss E, Bogucki D, Voss KJ (2004) The role of seawater constituents in light backscattering in the ocean. Prog Oceanogr 61:27–56

    Article  Google Scholar 

  • Twardowski MS, Boss E, Macdonald JB, Pegau WS, Barnard AH, Zaneveld JRV (2001) A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. J Geophys Res Oceans 106:14129–14142

    Article  CAS  Google Scholar 

  • Tyler AN, Svab E, Preston T, Présing M, Kovács WA (2006) Remote sensing of the water quality of shallow lakes: a mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. Int J Remote Sens 27:1521–1537

    Article  Google Scholar 

  • Tzortziou M, Herman JR, Gallegos CL, Neale PJ, Subramaniam A, Harding LW Jr, Ahmad Z (2006) Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure. Estuar Coast Shelf Sci 68:348–362

    Article  Google Scholar 

  • Vanderwoerd H, Pasterkamp R (2008) HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters. Remote Sens Environ 112:1795–1807

    Article  Google Scholar 

  • Vidot J, Santer R (2005) Atmospheric correction for inland waters—application to SeaWiFS. Int J Remote Sens 26:3663–3682

    Article  Google Scholar 

  • Volten H, De Haan J, Hovenier J (1998) Laboratory measurements of angular distributions of light scattered by phytoplankton and silt. Limnol Oceanogr 46:1180–1197

    Article  Google Scholar 

  • Wang M, Son S, Shi W (2009) Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote Sens Environ 113:635–644

    Article  Google Scholar 

  • Witter DL, Ortiz JD, Palm S, Heath RT, Budd JW (2009) Assessing the application of SeaWiFS ocean color algorithms to Lake Erie. J Great Lakes Res 35:361–370

    Article  CAS  Google Scholar 

  • Yacobi YZ, Gitelson A, Mayo M (1995) Remote sensing of chlorophyll in Lake Kinneret using high spectral resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development. J Plankton Res 17:2155–2173

    Article  CAS  Google Scholar 

  • Yentsch CS, Yentsch CM (1979) Fluorescence spectral signatures: the characterization of phytoplankton populations by the use of excitation and emission spectra. J Mar Res 37:471–483

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allan, M.G., McBride, C.G. (2018). Remote Sensing of Water Quality. In: Hamilton, D., Collier, K., Quinn, J., Howard-Williams, C. (eds) Lake Restoration Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-93043-5_14

Download citation

Publish with us

Policies and ethics