Skip to main content

Rhythmics of Motion

  • Chapter
  • First Online:
Biomimetics of Motion

Abstract

In locomotion, the pattern and timing of the movement of limbs and core identifies different gaits, which are medium-, geometry- and outcome-specific. Different movement patterns arise to answer to changing conditions, by adapting speed, rhythm and effort during the duration of the action, modifying and balancing energy use and need of action. This chapter presents three main concepts defining variations in locomotion and five categories of locomotion, with the relative variations of gait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The cross-section of the wing modifies the air flow, generating a pressure difference between the upper and the lower side of the wing. Lift supports the body acting perpendicularly to the airflow, while drag retards the body acting parallel to the airflow. The angle of incidence of the airfoil affects the lifting effect: if the angle is too large, the pressure difference falls causing the airfoil to stall. Natural wings are well adapted to prevent stalling and undesired turbulences (Rayner 1981).

References

  • Alexander RMcN (1981) The gait of tetrapods: adaptations for stability and economy. In: Day MH (ed) Vertebrate locomotion, symposia of the Zoological Society of London, nr.48. Academic Press Inc., London, UK. ISBN 0-12-613348-4

    Google Scholar 

  • Alexander RMcN (2000) Storage and release of elastic energy. In Nigg BM, MacIntosh BR, Mester J (eds) Biomechanics and biology of movement. Human kinetics. Champaign, Ill. ISBN 0-7360-0331-2

    Google Scholar 

  • Alexander RMcN (2004) Bipedal animals, and their differences from humans. J Anat 204:321–330. https://doi.org/10.1111/j.0021-8782.2004.00289.x

    Article  Google Scholar 

  • Alexander RMcN (2005) Models and the scaling of energy costs for locomotion. J Exp Biol 208:1645–1652. https://doi.org/10.1242/jeb.01484

    Article  Google Scholar 

  • Altman JS, Kien J (1985) The anatomical basis for intersegmental and bilateral coordination in locusts. In: Bush BMH, Clarac F (eds) Coordination of motor behaviour. Cambridge University Press, Cambridge UK. ISBN 978-0521264259

    Google Scholar 

  • Astley HC (2012) Getting around when you’re round: quantitative analysis of the locomotion of the blunt-spined brittle star, Ophiocoma echinata. J Exp Biol 215:1923–1929. https://doi.org/10.1242/jeb.068460

    Article  Google Scholar 

  • Baudinette RV, Biewener A (1998) Young wallabies get a free ride. Nature 395:653–654. https://doi.org/10.1038/27111

    Article  Google Scholar 

  • Bertram JEA, Gutmann A (2009) Motions of the running horse and cheetah revisited: fundamental mechanics of the transverse and rotary gallop. J R Soc Interface 6(35):549–559. https://doi.org/10.1098/rsif.2008.0328

    Article  Google Scholar 

  • Biewener AA (2006) Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. J Exp Zool Part A, 899–911. https://doi.org/10.1002/jez.a.334

    Article  Google Scholar 

  • Biewener AA (2007) Animal locomotion. Oxford University Press, Oxford, UK. ISBN 978-0-19-850022-3

    Google Scholar 

  • Brodsky AK (1994) The evolution of insect flight. Oxford University Press, Oxford, UK. ISBN 0-19-854681-5

    Google Scholar 

  • Brown ME (2013) The physiology of fishes: behavior. Academic Press. Inc., New York. ISBN 9781483262673

    Google Scholar 

  • Burrows M (2009) How fleas jump. J Exp Biol 212(18):2881–2883. https://doi.org/10.1242/jeb.022855

    Article  Google Scholar 

  • Burrows M, Hoyle G (1973) The mechanism of rapid running in the ghost crab, Ocypode ceratophthalma. J Exp Biol 58:327–349. ISSN 1477-9145

    Google Scholar 

  • Bush BMH, Clarac F (1985) Introduction. In: Bush BMH, Clarac F (eds) Coordination of motor behaviour. Cambridge University Press, pp 1–7. ISBN 978-0521264259

    Google Scholar 

  • Butler SM, Camilli A (2005) Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat Rev Microbiol 3(8):611–620. https://doi.org/10.1038/nrmicro1207

    Article  Google Scholar 

  • Clarac F (1985) Peripheral influences on the coordination of the legs during walking in decapod crustaceans. In Bush BMH, Clarac F (eds) Coordination of motor behaviour. Cambridge University Press, Cambridge UK. ISBN 978-0521264259

    Google Scholar 

  • Cruse H, Graham D (1985) Models for the analysis of walking in arthropods. In Bush BMH, Clarac F (eds) Coordination of motor behaviour. Cambridge University Press, Cambridge UK. ISBN 978-0521264259

    Google Scholar 

  • Cruse H, Durr V, Schilling M, Schmitz J (2009) Principles of insect locomotion. In Arena P, Patanè L (eds) Spatial temporal patterns for action-oriented perception in roving robots. Cognitive systems monographs 1. Springer, Berlin, pp 43–96. https://doi.org/10.1007/978-3-540-88464-4_2

  • Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288(5463):100–106. https://doi.org/10.1126/science.288.5463.100

    Article  Google Scholar 

  • Day MH (ed) (1981) Vertebrate locomotion, symposia of the Zoological Society of London no.48, The Zoological Society of London, Academic Press Inc., Oxford, London. ISBN 9780126133486

    Google Scholar 

  • Elder HY, Trueman ER (eds) (1980) Aspects of animal movement. Cambridge University Press, Cambridge, USA. https://doi.org/10.1113/expphysiol.1981.sp002536

  • Full RJ, Tu MS (1991) Mechanics of a rapid running insect: two-, four-, and six-legged locomotion. J Exp Biol 156:215-231. ISSN 1477-9145

    Google Scholar 

  • Gans C (1985) Motor coordination factors in the transition from tetrapody to limblessness in lower vertebrates. In: Bush BMH, Clarac F (eds) Coordination of motor behaviour. Cambridge University Press, pp 183–199. ISBN 978-0521264259

    Google Scholar 

  • Gans C (1986) Locomotion of limbless vertebrates: pattern and evolution. Herpetologica 42(1):33–46

    Google Scholar 

  • Ghorbani A, Najafi A (2017) Symplectic and antipectic waves in an array of beating cilia attached to a closed body. American Physical Society, Phys Rev E 95:5. https://doi.org/10.1103/physreve.95.052412

    Article  Google Scholar 

  • Goldspink G (1981) The use of muscles during flying, swimming, and running from the point of view of energy saving. In Day MH (ed) Vertebrate locomotion, symposia of the Zoological Society of London, nr.48. Academic Press Inc., London, UK. ISBN 0-12-613348-4

    Google Scholar 

  • Grabowska M, Godlewska E, Schmidt J, Daun-Gruhn S (2012) Quadrupedal gaits in hexapod animals – inter-leg coordination in free-walking adult stick insects. J Exp Biol 215:4255–4266. https://doi.org/10.1242/jeb.073643

    Article  Google Scholar 

  • Gruber P (2011) Biomimetics in architecture, architecture of life and buildings. Springer-Verlag, Wien. ISBN 978-3-7091-0331-9

    Book  Google Scholar 

  • Guo ZV, Mahadevan L (2008) Limbless undulatory propulsion on land. PNAS 105(9):3179–3184. https://doi.org/10.1073/pnas.0705442105

    Article  Google Scholar 

  • Hale ME, Day RD, Thorsen DH, Westneat MW (2006) Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes. J Exp Biol 209:3708–3718. https://doi.org/10.1242/jeb.02449

    Article  Google Scholar 

  • Harischandra N, Knuesel J, Kozlov A, Bicanski A, Cabelguen J-M, Ijspeert A, Ekeberg O (2011) Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: a simulation study. Front Neuro 5(3):1–13. https://doi.org/10.3389/fnbot.2011.00003

    Article  Google Scholar 

  • Hildebrand M (1989) The quadrupedal gaits of vertebrates. BioScience 39(11), Animals in Motion 766–775. https://doi.org/10.2307/1311182

    Article  Google Scholar 

  • Hoyt DF, Taylor CR (1981) Gait and energetics of locomotion in horses. Nature 292:239–240. https://doi.org/10.1038/292239a0

    Article  Google Scholar 

  • Hudson PE, Corr SA, Wilson AM (2012) High speed galloping in the cheetah (Acinonyx jubatus) and the racing greyhound (Canis familiaris): spatio-temporal and kinetic characteristics. J Exp Biol 215:2425–2434. https://doi.org/10.1242/jeb.066720

    Article  Google Scholar 

  • Ishikawa T (2009) Suspension biomechanics of swimming microbes. J R Soc Interf 6:815–834. https://doi.org/10.1098/rsif.2009.0223

    Article  Google Scholar 

  • Ji A, Lei Y, Wang J, Ni Y, Dong B, Dai Z (2014) Variation in spatial and temporal kinematics of level, vertical and inverted locomotion on a stinkbug Erthesina fullo. Chin Sci Bull 59(26):3333–3340. https://doi.org/10.1007/s11434-014-0310-x

    Article  Google Scholar 

  • Kier WR (2012) The diversity of hydrostatic skeletons. J Exp Biol 215:1247–1257. https://doi.org/10.1242/jeb.056549

    Article  Google Scholar 

  • Lees J, Gardiner J, Usherwood J, Nudds R (2016) Locomotor preferences in terrestrial vertebrates: an online crowd sourcing approach to data collection. Scientific Reports 6 (28825), Nature. https://doi.org/10.1038/srep28825

  • Leman M, Moelants D, Varewyck M, Styns F, van Noorden L (2013) Activating and relaxing music entrains the speed of beat synchronized walking. PLoS ONE 8(7). https://doi.org/10.1371/journal.pone.0067932

    Article  Google Scholar 

  • Lindsay CC (1978) Form, function and locomotory habits in fish. In: Hoar D, Randall DJ (eds) Fish physiology, vol VII. New York Academic Press, pp 9–10

    Google Scholar 

  • Lissmann HW (1949) Rectilinear locomotion in a snake (Boa occidentalis). J Exp Biol 26:368–379. ISSN 1477-9145

    Google Scholar 

  • Marey EJ (1884) Geometric chronophotograph of a man in a black suit. In: Jensenius AR (ed) Some video abstraction techniques for displaying body movement in analysis and performance. Leonardo: J Int Soc Arts, Sci Technol 46(1):53–60 (2013)

    Google Scholar 

  • Marvi H, Bridges J, Hu DL (2013) Snakes mimic earthworms: propulsion using rectilinear travelling waves. J Roy Soc Interf 10. https://doi.org/10.1098/rsif.2013.0188

  • Massion J (1985) Postural changes during movement performance in a tetrapod. In Bush BMH, Clarac F (eds) Coordination of motor behaviour. Cambridge University Press, Cambridge UK. ISBN 978-0521264259

    Google Scholar 

  • Miller S, Schomburg ED (1985) Locomotor coordination in the cat. In: Bush BMH, Clarac F (eds) Coordination of motor behaviour. Cambridge University Press, Cambridge UK. ISBN 978-0521264259

    Google Scholar 

  • Minetti AE (2000) The tree modes of terrestrial locomotion. In Nigg BM, MacIntosh BR, Mester J (eds) Biomechanics and biology of movement. Human kinetics. Champaign, Ill. ISBN 0-7360-0331-2

    Google Scholar 

  • Moon B (2001) Snake locomotion. University of Louisiana at Lafayette. Accessed 15 February 2018 from https://www.ucs.louisiana.edu/~brm2286/locomotn.htm

  • Muramatsu K, Yamamoto J, Abe T, Sekiguchi K, Hoshi N, Sakurai Y (2013) Oceanic squid do fly. Marine biology, Springer. https://doi.org/10.1007/s00227-013-2169-9

    Article  Google Scholar 

  • Nombela C, Hughes LE, Owen AM, Grahn JA (2013) Into the groove: can rhythm influence Parkinson’s disease? Neurosci Biobehav Rev 37:2564–2570. https://doi.org/10.1016/j.neubiorev.2013.08.003

    Article  Google Scholar 

  • Norberg UM (1981) Flight, morphology and the ecological niche in some birds and bats. In Day MH (ed) Vertebrate locomotion, symposia of the Zoological Society of London, nr.48, Academic Press Inc., London, UK. ISBN 0-12-613348-4

    Google Scholar 

  • O’Connor SM, Dawson TJ, Kram R, Donelan JM (eds) (2014) The kangaroo’s tail propels and powers pentapedal locomotion. Biol Lett 10. Royal Society Publishing. https://doi.org/10.1098/rsbl.2014.0381

  • Rayner JMV (1981) Flight adaptations in vertebrates. In: Day MH (ed) Vertebrate locomotion, symposia of the Zoological Society of London, nr.48, Academic Press Inc., London, UK. ISBN 0-12-613348-4

    Google Scholar 

  • Richardson MJ, Marsh KL, Isenhower RW, Goodman JRL, Schmidt RC (2007) Rocketing together: dynamics of intentional and unintentional interpersonal coordination. Hum Mov Sci 26(6):867–891. https://doi.org/10.1016/j.humov.2007.07.002

    Article  Google Scholar 

  • Robert BL (1981) The organization of the nervous system of fishes in relation to locomotion. In Day MH (ed) Vertebrate locomotion, symposia of the Zoological Society of London, nr.48, Academic Press Inc., London, UK. ISBN 0-12-613348-4

    Google Scholar 

  • Roerdink M, Daffertshofer A, Marmelat V, Beek PJ (2015) How to sync to the beat of a persistent fractal metronome without falling off the treadmill? PLoS ONE 10(7). https://doi.org/10.1371/journal.pone.0134148

    Article  Google Scholar 

  • Rubenson J, Heliams DB, Lloyd DG, Fournier PA (2004) Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without aerial phase. Proc R Soc Lond B 271:1091–1099. https://doi.org/10.1098/rspb.2004.2702

    Article  Google Scholar 

  • Shiba K, Shibata D, Inaba K (2014) Autonomous changes in the swimmimg direction of sperm in the gastropod Strombus luhanus. J Exp Biol 217:986–996. https://doi.org/10.1242/jeb.095398

    Article  Google Scholar 

  • Seymour MK (1969) Locomotion and coelomic pressure in Lumbricus Terrestris L. J Exp Biol 51:47–58. ISSN 1477-9145

    Google Scholar 

  • Sleigh MA, Barlow DI (1980) Metachronism and control of locomotion in animals with many propulsive structures. In: Elder HY, Trueman ER (eds) Aspects of animal movement. Cambridge University Press. https://doi.org/10.1113/expphysiol.1981.sp002536

  • Smolka J, Bryne MJ, Scholtz CH, Dacke M (2013) A new galloping agit in an insect. Curr Biol 23(20):R913–R915. https://doi.org/10.1016/j.cub.2013.09.031

    Article  Google Scholar 

  • Soffe SR (1985) Central coordination of swimming in lower vertebrates. In: Bush BMH, Clarac F (eds) Coordination of motor behaviour. Cambridge University Press, pp 141–159. ISBN 978-0521264259

    Google Scholar 

  • Suter RB, Wildman H (1999) Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change. J Exp Biol 202:2771–2785. ISSN 1477-9145

    Google Scholar 

  • Sutton PG, Burrows M (2011) Biomechanics of jumping in the flea. J Exp Biol 214:836–847. https://doi.org/10.1242/jeb.052399

    Article  Google Scholar 

  • Tobalske BW (2007) Biomechanics of bird flight. J Exp Biol 210:3135–3146. https://doi.org/10.1242/jeb.000273

    Article  Google Scholar 

  • Tobalske BW, Peacock WL, Dial KP (1999) Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds. J Exp Biol 2020:1725–1739. ISSN 1477-9145

    Google Scholar 

  • Tunca C, Pehlivan N, Ak N, Arnrich B, Salur G, Ersoy C (2017) Inertial sensor-based Robust Gait analysis in non-hospital settings for neurological disorders. Sensors 17(825). https://doi.org/10.3390/s17040825

    Article  Google Scholar 

  • Valentine JW (2004) On the origin of phyla. The University of Chicago Press, Chicago and London. ISBN 0-226-84548-6

    Google Scholar 

  • Videler JJ (2005) Avian flight. Oxford University Press, Oxford, UK. ISBN 978-0-19856603-8

    Google Scholar 

  • Von Holst E (1973) The behavioural physiology of animals: the selected papers of Erich von Holst. University of Miami Press, ISBN, p 9780870242618

    Google Scholar 

  • Webb GJW, Gans C (1982) Galloping in crocodylus johnstoni—a reflection of terrestrial activity? Records of the Australian Museum 34(14):607–618. https://doi.org/10.3853/j.0067-1975.34.1982.244

    Article  Google Scholar 

  • Wilson AM, Van den Bogert AJ, McGuian MP (2000) Optimization of the muscle-tendon unit for economical locomotion in cursorial animals. In: Herzog W (ed). Skeletal muscle mechanics, from mechanisms to function. John Wiley & Sons, Ltd., Chichester, UK, pp 517–545. ISBN: 978-0-471-49238-2

    Google Scholar 

  • Zug GR (2017) Locomotion. Encyclopædia Britannica, inc. Accessed 20 February 2018 from https://www.britannica.com/topic/locomotion/Anguilliform-locomotion

  • Zuk W, Clark RH (1970) Kinetic architecture. Van Nostrand Reinhold, New York. ISBN 0442156723

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Persiani .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Persiani, S. (2019). Rhythmics of Motion. In: Biomimetics of Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-93079-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93079-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93078-7

  • Online ISBN: 978-3-319-93079-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics