Skip to main content

Actinopterygians: Head, Jaws and Muscles

  • Chapter
  • First Online:
Heads, Jaws, and Muscles

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

This chapter is targeted to a broad scientific audience such as students and non-specialists who would like to explore and understand the diversity of the head, jaws and cranial muscles encountered within the large class of ray-finned fishes (Actinopterygii). Actinopterygians are a wide group of bony fishes including more than 30,000 species, which means that it is obviously not possible to carry out a case-by-case assessment or to condense the subject in a few pages. Therefore, we have described the role of the musculoskeletal elements of the head occurring during breathing and feeding in a ray-finned fish representative of the group, as well as we have demonstrated that the actinopterygian skull is truly distinctive among vertebrates. We have also tried to explain the main information concerning the diversification and evolution of the jaws and muscles of the five extant actinopterygian lineages with more specificities on teleostean fishes which are the most diverse and advanced clade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts P (1991) Hyoid morphology and movements relative to abducting forces during feeding in Astatotilapia elegans (Teleostei: Cichlidae). J Morphol 208(3):323–345

    Article  PubMed  Google Scholar 

  • Alexander RM (1964) Adaptation in the skulls and cranial muscles of south American characinoid fish. Zool J Linnean Soc 45(305):169–190

    Article  Google Scholar 

  • Alexander RM (1967) The functions and mechanisms of the protrusible upper jaws of some acanthopterygian fish. J Zool 151(1):43–64

    Article  Google Scholar 

  • Alfaro ME, Janovetz J, Westneat MW (2001) Motor control across trophic strategies: muscle activity of biting and suction feeding fishes. Am Zool 41(6):1266–1279

    Google Scholar 

  • Alfaro ME et al (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci U S A 106(32):13410–13414

    Article  PubMed  PubMed Central  Google Scholar 

  • Allis EP (1897) The cranial muscles and cranial and first spinal nerves in Amia calva. Ginn

    Google Scholar 

  • Allis EP (1919) The homologies of the maxillary and vomer bones of Polypterus. Dev Dyn 25(4):348–394

    Google Scholar 

  • Allis EP (1922) The cranial anatomy of Polypterus, with special reference to Polypterus bichir. J Anat 56(3-4):189–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballintijn CM, Hughes GM (1965) The muscular basis of the respiratory pumps in the trout. J Exp Biol 43(2):349–362

    Google Scholar 

  • Ballintijn CM, Van Den Burg A, Egberink BP (1972) An electromyographic study of the adductor mandibulae complex of a free-swimming carp (Cyprinus carpio L.) during feeding. J Exp Biol 57(1):261–283

    Google Scholar 

  • Barel CDN (1983) Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth J Zool 33(4):357–424

    Article  Google Scholar 

  • Bemis WE, Forey PL (2001) Occipital structure and the posterior limit of the skull in actinopterygians. In: Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor & Francis, London, pp 41–62

    Google Scholar 

  • Bemis WE, Findeis EK, Grande L (1997) An overview of Acipenseriformes. Environ Biol Fish 48(1-4):25–71

    Article  Google Scholar 

  • Blot J (1966) Étude des Palaeonisciformes du bassin houiller de Commentry. Allier, Paris

    Google Scholar 

  • Brainerd EL, Ferry-Graham LA (2005) Mechanics of respiratory pumps. Fish Physiol 23:1–28

    Article  Google Scholar 

  • Camp AL, Konow N, Sanford CPJ (2009) Functional morphology and biomechanics of the tongue-bite apparatus in salmonid and osteoglossomorph fishes. J Anat 214(5):717–728

    Article  PubMed  PubMed Central  Google Scholar 

  • Camp AL, Roberts TJ, Brainerd EL (2015) Swimming muscles power suction feeding in largemouth bass. Proc Natl Acad Sci U S A 112(28):8690–8695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll AM (2004) Muscle activation and strain during suction feeding in the largemouth bass Micropterus salmoides. J Exp Biol 207(6):983–991

    Article  PubMed  Google Scholar 

  • Carroll AM, Wainwright PC (2003) Functional morphology of prey capture in the sturgeon, Scaphirhynchus albus. J Morphol 256(3):270–284

    Article  PubMed  Google Scholar 

  • Carroll AM et al (2004) Morphology predicts suction feeding performance in centrarchid fishes. J Exp Biol 207(22):3873–3881

    Article  PubMed  Google Scholar 

  • Carvalho M, Vari RP (2015) Development of the splanchnocranium in Prochilodus argenteus (Teleostei: Characiformes) with a discussion of the basal developmental patterns in the Otophysi. Zoology 118(1):34–50

    Article  PubMed  Google Scholar 

  • Cloutier R, Arratia G (2004) Early diversification of actinopterygians. In: Recent advances in the origin and early radiation of vertebrates. Pfeil, Munich, pp 217–270

    Google Scholar 

  • Cubbage CC, Mabee PM (1996) Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae). J Morphol 229(2):121–160

    Article  PubMed  Google Scholar 

  • Datovo A, Bockmann FA (2010) Dorsolateral head muscles of the catfish families Nematogenyidae and Trichomycteridae (Siluriformes: Loricarioidei): comparative anatomy and phylogenetic analysis. Neotrop Ichthyol 8(2):193–246

    Article  Google Scholar 

  • Datovo A, Castro RMC (2012) Anatomy and evolution of the mandibular, hyopalatine, and opercular muscles in characiform fishes (Teleostei: Ostariophysi). Zoology 115(2):84–116

    Article  PubMed  Google Scholar 

  • Datovo A, Vari RP (2013) The jaw adductor muscle complex in teleostean fishes: evolution, homologies and revised nomenclature (osteichthyes: actinopterygii). PLoS One 8(4):e60846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datovo A, Vari RP (2014) The adductor mandibulae muscle complex in lower teleostean fishes (Osteichthyes: Actinopterygii): comparative anatomy, synonymy, and phylogenetic implications. Zool J Linnean Soc 171(3):552–622

    Article  Google Scholar 

  • Day SW et al (2005) Sucking while swimming: evaluating the effects of ram speed on suction generation in bluegill sunfish Lepomis macrochirus using digital particle image velocimetry. J Exp Biol 208(14):2653–2660

    Article  PubMed  Google Scholar 

  • Day SW, Higham TE, Wainwright PC (2007) Time resolved measurements of the flow generated by suction feeding fish. Exp Fluids 43(5):713–724

    Article  Google Scholar 

  • De Schepper N, Adriaens D, De Kegel B (2005) Moringua edwardsi (Moringuidae: Anguilliformes): cranial specialization for head-first burrowing. J Morphol 266(3):356–368

    Article  PubMed  Google Scholar 

  • De Schepper N, De Kegel B, Adriaens D (2007) Pisodonophis boro (Ophichthidae: Anguilliformes): specialization for head-first and tail-first burrowing. J Morphol 268(2):112–126

    Article  PubMed  Google Scholar 

  • Deary AL, Hilton EJ (2016) Comparative ontogeny of the feeding apparatus of sympatric drums (Perciformes: Sciaenidae) in the Chesapeake Bay. J Morphol 277(2):183–195

    Article  PubMed  Google Scholar 

  • Delsman HC (1925) Fishes with protrusile mouths. Treubia 6:98–106

    Google Scholar 

  • Diogo R (2008) The origin of higher clades: osteology, myology, phylogeny and evolution of bony fishes and the rise of tetrapods. Science, New York

    Book  Google Scholar 

  • Diogo R, Abdala V (2010) Muscles of vertebrates: comparative anatomy, evolution, homologies and development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Diogo R, Chardon M (2000a) Anatomie et fonction des structures céphaliques associées à la prise de nourriture chez le genre Chrysichthys (Teleostei: Siluriformes). Belg J Zool 130(1):21–37

    Google Scholar 

  • Diogo R, Chardon M (2000b) Homologies among different adductor mandibuale sections of teleostan fishes, with special regard to catfishes (Teleostei: Siluriformes). J Morphol 243(2):193–208

    Article  CAS  PubMed  Google Scholar 

  • Diogo R, Hinits Y, Hughes SM (2008) Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods. BMC Dev Biol 8(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Eagderi S, Adriaens D (2010) Cephalic morphology of Pythonichthys macrurus (Heterenchelyidae: Anguilliformes): specializations for head-first burrowing. J Morphol 271(9):1053–1065

    Article  PubMed  Google Scholar 

  • Edgeworth FH (1935) The cranial muscles of vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Engeman JM, Aspinwall N, Mabee PM (2009) Development of the pharyngeal arch skeleton in Catostomus commersonii (Teleostei: Cypriniformes). J Morphol 270(3):291–305

    Article  PubMed  Google Scholar 

  • Faustino M, Power DM (2001) Osteologic development of the viscerocranial skeleton in sea bream: alternative ossification strategies in teleost fish. J Fish Biol 58(2):537–572

    Article  Google Scholar 

  • Ferry LA, Paig-Tran EM, Gibb AC (2015) Suction, ram, and biting: deviations and limitations to the capture of aquatic prey. Integr Comp Biol 55(1):97–109

    Article  PubMed  Google Scholar 

  • Ferry-Graham LA, Lauder GV, Hulsey CD (2001) Aquatic prey capture in ray-finned fishes: a century of progress and new directions. J Morphol 248(2):99–119

    Article  CAS  PubMed  Google Scholar 

  • Fraser GJ et al (2009) An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol 7(2):e1000031

    Article  CAS  PubMed Central  Google Scholar 

  • Geerinckx T et al (2007) A head with a suckermouth: a functional-morphological study of the head of the suckermouth armoured catfish Ancistrus cf. triradiatus (Loricariidae, Siluriformes). Belg J Zool 137(1):47–66

    Google Scholar 

  • Géry J (1962) Pterohemiodus luelingi sp. nov., un curieux poisson characoïde à nageoire dorsale filamenteuse, avec une clé des genres d’Hemiodontinae (Ostariophysi-Erythrinidae). Bonner zoologische Beiträge 59(12):332–342

    Google Scholar 

  • Géry J (1963) L’appareil protracteur buccal de Bivibranchia (Characoidei) avec une note sur Phractolaemus (Chanoidei) (Pisces). Vie et Milieu 13(4):729–740

    Google Scholar 

  • Gibb A (1996) The kinematics of prey capture in Xystreurys liolepis: do all flatfish feed asymmetrically? J Exp Biol 199(10):2269–2283

    CAS  PubMed  Google Scholar 

  • Gidmark NJ et al (2012) Flexibility in starting posture drives flexibility in kinematic behavior of the kinethmoid-mediated premaxillary protrusion mechanism in a cyprinid fish, Cyprinus carpio. J Exp Biol 215(13):2262–2272

    Article  PubMed  Google Scholar 

  • Gidmark NJ et al (2015) Functional morphology of durophagy in black carp, Mylopharyngodon piceus. J Morphol 276(12):1422–1432

    Article  PubMed  Google Scholar 

  • Goodrich ES (1958) Studies on the structure and development of vertebrates, vol II. Macmillan, London

    Google Scholar 

  • Gosline WA (1973) Considerations regarding the phylogeny of cypriniform fishes, with special reference to structures associated with feeding. Copeia 1973(4):761–776

    Article  Google Scholar 

  • Gosline WA (1980) The evolution of some structural systems with reference to the interrelationships of modern lower teleostean fish groups. Japan J Ichthyol 27(1):1–28

    Google Scholar 

  • Gosline WA (1989) Two patterns of differentiation in the jaw musculature of teleostean fishes. J Zool 218(4):649–661

    Article  Google Scholar 

  • Grande T, Poyato-Ariza FJ (1999) Phylogenetic relationships of fossil and recent gonorynchiform fishes (Teleostei: Ostariophysi). Zool J Linnean Soc 125(2):197–238

    Article  Google Scholar 

  • Grande T, Poyato-Ariza FJ, Diogo R (2010) Gonorynchiformes and Ostariophysan relationships: a comprehensive review. Science, New York

    Book  Google Scholar 

  • Greenwood PH et al (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the AMNH 131:4

    Google Scholar 

  • Grubich JR (2001) Prey capture in actinopterygian fishes: a review of suction feeding motor patterns with new evidence from an elopomorph fish, Megalops atlanticus. Am Zool 41(6):1258–1265

    Google Scholar 

  • Helfman GS et al (2009) The diversity of fishes: biology, evolution, and ecology. Wiley, Hoboken, NJ

    Google Scholar 

  • Herbing IHV et al (1996) Ontogeny of feeding and respiration in larval Atlantic cod Gadus morhua (Teleostei, Gadiformes): I. Morphology. J Morphol 227(1):15–35

    Article  PubMed  Google Scholar 

  • Hernandez LP, Staab KL (2015) Bottom feeding and beyond: how the premaxillary protrusion of cypriniforms allowed for a novel kind of suction feeding. Integr Comp Biol 55(1):74–84

    Article  PubMed  Google Scholar 

  • Hernandez PL, Bird NC, Staab KL (2007) Using zebrafish to investigate cypriniform evolutionary novelties: functional development and evolutionary diversification of the kinethmoid. J Exp Zool B Mol Dev Evol 308(5):625–641

    Article  Google Scholar 

  • Higham TE, Day SW, Wainwright PC (2006a) Multidimensional analysis of suction feeding performance in fishes: fluid speed, acceleration, strike accuracy and the ingested volume of water. J Exp Biol 209(14):2713–2725

    Article  PubMed  Google Scholar 

  • Higham TE, Day SW, Wainwright PC (2006b) The pressures of suction feeding: the relation between buccal pressure and induced fluid speed in centrarchid fishes. J Exp Biol 209(17):3281–3287

    Article  PubMed  Google Scholar 

  • Holzman R et al (2008) Jaw protrusion enhances forces exerted on prey by suction feeding fishes. J R Soc Interface 5(29):1445–1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber DR et al (2005) Analysis of the bite force and mechanical design of the feeding mechanism of the durophagous horn shark Heterodontus francisci. J Exp Biol 208(18):3553–3571

    Article  PubMed  Google Scholar 

  • Hughes GM, Shelton G (1958) The mechanism of gill ventilation in three freshwater teleosts. J Exp Biol 35(4):807–823

    Google Scholar 

  • Hulsey CD, Garcia De Leon FJ (2005) Cichlid jaw mechanics: linking morphology to feeding specialization. Funct Ecol 19(3):487–494

    Article  Google Scholar 

  • Inoue JG et al (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Mol Phylogenet Evol 26(1):110–120

    Article  CAS  PubMed  Google Scholar 

  • Janvier P (1996) Early vertebrates. Oxford University Press, New York, NY

    Google Scholar 

  • Kammerer CF, Grande L, Westneat MW (2006) Comparative and developmental functional morphology of the jaws of living and fossil gars (Actinopterygii: Lepisosteidae). J Morphol 267(9):1017–1031

    Article  PubMed  Google Scholar 

  • Kardong KV (2012) Vertebrates: comparative anatomy, function, evolution. McGraw-Hill Higher Education, New York

    Google Scholar 

  • Kimmel CB et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB et al (2001) Neural crest patterning and the evolution of the jaw. J Anat 199(1–2):105–119

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis P et al (2015) The developmental pattern of the musculature associated with the mandibular and hyoid arches in the longnose gar, Lepisosteus osseus (Actinopterygii, Ginglymodi, Lepisosteiformes). Copeia 103(4):920–932

    Article  Google Scholar 

  • Lauder GV (1980) Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J Morphol 163(3):283–317

    Article  PubMed  Google Scholar 

  • Lauder GV (1982) Patterns of evolution in the feeding mechanism of actinopterygian fishes. Am Zool 22(2):275–285

    Article  Google Scholar 

  • Lauder GV (1985) Aquatic feeding in lower vertebrates. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, pp 210–229

    Google Scholar 

  • Lauder GV, Liem KF (1980) The feeding mechanism and cephalic myology of Salvelinus fontinalis: form, function, and evolutionary significance. In: Charrs: Salomnids of the genus Salvelinus, pp 365–390

    Google Scholar 

  • Lauder GV, Liem KF (1981) Prey capture by Luciocephalus pulcher: implications for models of jaw protrusion in teleost fishes. Environ Biol Fish 6(3):257–268

    Article  Google Scholar 

  • Lauder GV, Liem KF (1983) Patterns of diversity and evolution in ray-finned fishes. Fish Neurobiol 1:1–24

    Google Scholar 

  • Lecointre G, Le Guyader H (2001) Classification phylogénétique du vivant, vol Vol. 2. Belin, Paris

    Google Scholar 

  • Liem KF (1967) Functional morphology of the head of the anabantoid teleost fish Helostoma temmincki. J Morphol 121(2):135–157

    Article  CAS  PubMed  Google Scholar 

  • Liem KF (1978) Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlids fishes. Part I. Piscivores. J Morphol 158(3):323–360

    Article  PubMed  Google Scholar 

  • Liem KF (1980) Adaptive significance of intra-and interspecific differences in the feeding repertoires of cichlid fishes. Am Zool 20(1):295–314

    Article  Google Scholar 

  • Liem KF (1990) Aquatic versus terrestrial feeding modes: possible impacts on the trophic ecology of vertebrates. Am Zool 30(1):209–221

    Article  Google Scholar 

  • López-Fernández H et al (2012) Diet-morphology correlations in the radiation of South American geophagine cichlids (Perciformes: Cichlidae: Cichlinae). PLoS One 7(4):e33997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCord CL, Westneat MW (2016) Evolutionary patterns of shape and functional diversification in the skull and jaw musculature of triggerfishes (Teleostei: Balistidae). J Morphol 277(6):737–752

    Article  PubMed  Google Scholar 

  • Miller MJ (2004) The ecology and functional morphology of feeding of North American sturgeon and paddlefish. In: Sturgeons and paddlefish of North America. Springer, Dordrecht, pp 87–102

    Google Scholar 

  • Miller RF, McGovern JH (1996) Preliminary report of fossil fish (Actinopterygii: Palaeonisciformes) from the Lower Carboniferous Albert Formation at Norton, New Brunswick (NTS 21 H/12). Current research, pp 97–104

    Google Scholar 

  • Motta PJ (1984) Mechanics and functions of jaw protrusion in teleost fishes: a review. Copeia 1984(1):1–18

    Article  Google Scholar 

  • Motta PJ, Huber DR (2004) Prey capture behavior and feeding mechanics of elasmobranchs. In: Biology of sharks and their relatives, 2nd edn. Taylor & Francis, London, pp 153–197

    Google Scholar 

  • Muller M (1987) Optimization principles applied to the mechanism of neurocranium levation and mouth bottom depression in bony fishes (Halecostomi). J Theor Biol 126(3):343–368

    Article  Google Scholar 

  • Muller M, Osse JWM, Verhagen JHG (1982) A quantitative hydrodynamical model of suction feeding in fish. J Theor Biol 95(1):49–79

    Article  Google Scholar 

  • Nelson JS (1994) Fishes of the world. Wiley, New York

    Google Scholar 

  • Nelson JS (2006) Fishes of the world. Wiley, Hoboken

    Google Scholar 

  • Nelson JS, Grande T, Wilson MVH (2016) Fishes of the world. Wiley, New York

    Book  Google Scholar 

  • Noda M, Miyake T, Okabe M (2017) Development of cranial muscles in the actinopterygian fish Senegal bichir, Polypterus senegalus Cuvier, 1829. J Morphol 278(4):450–463

    Article  PubMed  Google Scholar 

  • Osse JWM (1969) Functional morphology of the head of the perch (Perca Fluviatilis L.): an electromyographic study. Neth J Zool 19(3):289–392

    Article  Google Scholar 

  • Osse JWM (1985) Jaw protrusion, an optimization of the feeding apparatus of teleosts? Acta Biotheor 34(2):219–232

    Article  Google Scholar 

  • Owen R (1846) Lectures on the comparative anatomy and physiology of the vertebrate animals: Delivered at the Royal College of Surgeons of England, in 1844 and 1846. Volume 2. Part I - Fishes. Longman, Brown, Green, and Longmans

    Google Scholar 

  • Owen R (1866) Comparative anatomy and physiology of vertebrates: fishes and reptiles. Longman, Harlow

    Google Scholar 

  • Parmentier E (2003) Contribution à l’étude des relations entre des poissons de la famille des Carapidae et leurs hôtes invertébrés: une approche mutidisciplinaire. University of Liège, Liège

    Google Scholar 

  • Parmentier E et al (1998) Morphology of the buccal apparatus and related structures in four species of Carapidae. Aust J Zool 46(4):391–404

    Article  Google Scholar 

  • Parmentier E, Vandewalle P, Lagardere F (2001) Morpho-anatomy of the otic region in carapid fishes: eco-morphological study of their otoliths. J Fish Biol 58(4):1046–1061

    Article  Google Scholar 

  • Patterson C (1994) Bony fishes. In: Prothero DR, Schoch RM (eds) Major features of vertebrate evolution, Short courses in paleontology, vol 7. Paleontological Society, University of Tennessee, Knoxville, pp 57–84

    Google Scholar 

  • Peng Z et al (2009) Teleost fishes (Teleostei). The timetree of life. Oxford University Press, Oxford, pp 335–338

    Google Scholar 

  • Poplin CM (1984) Lawrenciella schaefferi n.g., n.sp. (Pisces: Actinopterygii) and the use of endocranial characters in the classification of the Palaeonisciformes. J Vertebr Paleontol 4(3):413–421

    Article  Google Scholar 

  • Regan CT (1911) LXV. The classification of the teleostean fishes of the order Ostariophysi—2. Siluroidea. Ann Mag Nat Hist 8(47):553–577

    Article  Google Scholar 

  • Roberts TR (1974) Dental polymorphism and systematics in Saccodon, a neotropical genus of freshwater fishes (Parodontidae, Characoidei). J Zool 173(3):303–321

    Article  Google Scholar 

  • Rosen DE (1982) Teleostean interrelationships, morphological function and evolutionary inference. Am Zool 22(2):261–273

    Article  Google Scholar 

  • Sanford CP, Lauder GV (1989) Functional morphology of the tongue-bite in the osteoglossomorph fish Notopterus. J Morphol 202(3):379–408

    Article  PubMed  Google Scholar 

  • Schaeffer B, Rosen BE (1961) Major adaptive levels in the evolution of the actinopterygian feeding mechanism. Am Zool 1(2):187–204

    Article  Google Scholar 

  • Schilling TF, Kimmel CB (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120(3):483–494

    CAS  PubMed  Google Scholar 

  • Schilling TF, Kimmel CB (1997) Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 124(15):2945–2960

    CAS  PubMed  Google Scholar 

  • Shadwick RE, Lauder GV (2006) Fish physiology: fish biomechanics, vol 23. Academic Press, Cambridge

    Google Scholar 

  • Staab KL, Hernandez LP (2010) Development of the cypriniform protrusible jaw complex in Danio rerio: constructional insights for evolution. J Morphol 271(7):814–825

    PubMed  Google Scholar 

  • Staab KL et al (2012) Independently evolved upper jaw protrusion mechanisms show convergent hydrodynamic function in teleost fishes. J Exp Biol 215(9):1456–1463

    Article  PubMed  Google Scholar 

  • Thys van den Audenaerde DFE (1961) L’anatomie de Phractolaemus ansorgei Blgr. et la position systématique des Phractolaemidae. Annales du Musée Royal de l’Afrique Centrale, Sciences Zoologiques, série 8(103):101–167

    Google Scholar 

  • Traquair RH (1870) The cranial osteology of Polypterus. J Anat Physiol 5(Pt 1):166–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Wassenbergh S, Aerts P, Herrel A (2005) Scaling of suction-feeding kinematics and dynamics in the African catfish, Clarias gariepinus. J Exp Biol 208(11):2103–2114

    Article  PubMed  Google Scholar 

  • Vandewalle P et al (1992) Early development of the cephalic skeleton of Barbus barbus (Teleostei, Cyprinidae). J Fish Biol 41(1):43–62

    Article  Google Scholar 

  • Vandewalle P et al (1997) Postembryonic development of the cephalic region in Heterobranchus longifilis. J Fish Biol 50(2):227–253

    Google Scholar 

  • Vandewalle P, Parmentier E, Chardon M (2000) The branchial basket in teleost feeding. Cybium 24(4):319–342

    Google Scholar 

  • Vari RP (1985) A new species of Bivibranchia (Pisces: Characiformes) from Surinam, with comments on the genus. Proc Biol Soc Wash 98(2):511–522

    Google Scholar 

  • Vari RP, Goulding M (1985) A new species of Bivibranchia (Pisces: Characiformes) from the Amazon River basin. Proc Biol Soc Wash 98(4):1054–1061

    Google Scholar 

  • Venkatesh B, Erdmann MV, Brenner S (2001) Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc Natl Acad Sci U S A 98(20):11382–11387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrba ES (1968) Contributions to the functional morphology of fishes. Part V The feeding mechanism of Elops taurus Linnaeus. Afr Zool 3(2):211–236

    Article  Google Scholar 

  • Wainwright PC et al (1989) Evolution of motor patterns: aquatic feeding in salamanders and ray-finned fishes. Brain Behav Evol 34(6):329–341

    Article  CAS  PubMed  Google Scholar 

  • Wainwright PC et al (2001) Evaluating the use of ram and suction during prey capture by cichlid fishes. J Exp Biol 204(17):3039–3051

    CAS  PubMed  Google Scholar 

  • Wainwright P et al (2007) Suction feeding mechanics, performance, and diversity in fishes. Integr Comp Biol 47(1):96–106

    Article  PubMed  Google Scholar 

  • Wainwright PC et al (2015) Origins, innovations, and diversification of suction feeding in vertebrates. Integr Comp Biol 55(1):134–145

    Article  PubMed  Google Scholar 

  • Waltzek TB, Wainwright PC (2003) Functional morphology of extreme jaw protrusion in Neotropical cichlids. J Morphol 257(1):96–106

    Article  PubMed  Google Scholar 

  • Westneat MW (1994) Transmission of force and velocity in the feeding mechanisms of labrid fishes (Teleostei, Perciformes). Zoomorphology 114(2):103–118

    Article  Google Scholar 

  • Westneat MW (2004) Evolution of levers and linkages in the feeding mechanisms of fishes. Integr Comp Biol 44(5):378–389

    Article  PubMed  Google Scholar 

  • Westneat MW (2005) Skull biomechanics and suction feeding in fishes. Fish Physiol 23:29–75

    Article  Google Scholar 

  • Westneat MW, Olsen AM (2015) How fish power suction feeding. Proc Natl Acad Sci 112(28):8525–8526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westneat MW, Wainwright PC (1989) Feeding mechanism of Epibulus insidiator (Labridae; Teleostei): evolution of a novel functional system. J Morphol 202(2):129–150

    Article  PubMed  Google Scholar 

  • Wilga C, Motta P (1998) Conservation and variation in the feeding mechanism of the spiny dogfish Squalus acanthias. J Exp Biol 201(9):1345–1358

    PubMed  Google Scholar 

  • Wilson MVH, Veilleux P (1982) Comparative osteology and relationships of the Umbridae (Pisces: Salmoniformes). Zool J Linnean Soc 76(4):321–352

    Article  Google Scholar 

  • Winterbottom R (1974) A descriptive synonymy of the striated muscles of the Teleostei. Proc Acad Natl Sci Phila 125(125):225–317

    Google Scholar 

  • Wu KY, Shen SC (2004) Review of the teleostean adductor mandibulae and its significance to the systematic positions of the Polymixiiformes, Lampridiformes, and Triacanthoidei. Zool Stud 43(4):712–736

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Parmentier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huby, A., Parmentier, E. (2019). Actinopterygians: Head, Jaws and Muscles. In: Ziermann, J., Diaz Jr, R., Diogo, R. (eds) Heads, Jaws, and Muscles. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93560-7_5

Download citation

Publish with us

Policies and ethics