Skip to main content

Contribution of Social Network Analysis and Collective Phenomena to Understanding Social Complexity and Cognition

  • Chapter
  • First Online:
Evolution of Primate Social Cognition

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 5))

Abstract

The social brain hypothesis postulates the increasing complexity of social interactions as a driving force for the evolution of cognitive abilities. Whereas dyadic and triadic relations play a basic role in defining social behaviours and pose many challenges for the social brain, individuals in animal societies typically belong to relatively large networks. How the structure and dynamics of these networks also contribute to the evolution of cognition, and vice versa, is less understood. Here we review how collective phenomena can occur in systems where social agents do not require sophisticated cognitive skills, and how complex networks can grow from simple probabilistic rules, or even emerge from the interaction between agents and their environment, without explicit social factors. We further show that the analysis of social networks can be used to develop good indicators of social complexity beyond the individual or dyadic level. We also discuss the types of challenges that the social brain must cope within structured groups, such as higher information fluxes, originating from individuals playing different roles in the network, or dyadic contacts of widely varying durations and frequencies. We discuss the relevance of these ideas for primates and other animals’ societies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R, Jeong H, Barabási A-L (2000) Attack and error tolerance of complex networks. Nature 406:378–382

    Article  CAS  PubMed  Google Scholar 

  • Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469(3):93–153

    Article  Google Scholar 

  • Aureli F, Schaffner CM, Boesch C, Bearder SK, Call J, Chapman CA, Connor R, Di Fiore A, Dunbar RIM, Peter Henzi S, Holekamp K, Korstjens AH, Layton R, Lee P, Lehmann J, Manson JH, Ramos-Fernandez G, Strier KB, van Schaik CP (2008) Fission-fusion dynamics: new research frameworks [with comments]. Curr Anthropol 49(4):627

    Article  Google Scholar 

  • Ballerini M, Cabibbo N, Candelier R, Cavagna A et al (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci USA 105(4):1232–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  PubMed  Google Scholar 

  • Barrett L, Henzi P, Rendall D (2007) Social brains, simple minds: does social complexity really require cognitive complexity? Philos Trans R Soc B 362:561–575

    Article  Google Scholar 

  • Barrett L, Henzi SP, Lusseau D (2012) Taking sociality seriously: the structure of multi-dimensional social networks as a source of information for individuals. Philos Trans R Soc Lond Ser B Biol Sci 367(1599):2108–2118

    Article  Google Scholar 

  • Bergman TJ, Beehner JC (2015) Measuring social complexity. Anim Behav 103:203–209

    Article  Google Scholar 

  • Bialek W, Cavagna A, Giardina I, Mora T et al (2014) Social interactions dominate speed control in poising natural flocks near criticality. Proc Natl Acad Sci USA 111(20):7212–7217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollobás B, Riordan O (2006) Percolation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg J-L, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12(5):188–193

    Article  CAS  PubMed  Google Scholar 

  • Bonnell TR, Clarke PM, Henzi SP, Barrett L (2017) Individual-level movement bias leads to the formation of higher-order social structure in a mobile group of baboons. PeerJ Preprints 5:e2808v1

    Google Scholar 

  • Brent LJ (2015) Friends of friends: are indirect connections in social networks important to animal behaviour? Anim Behav 103:211–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Brent LJN, Franks DW, Foster EA, Balcomb KC, Cant MA, Croft DP (2015) Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr Biol 25:746–750

    Article  CAS  PubMed  Google Scholar 

  • Camley BA, Zimmermann J, Levine H, Rappel W-J (2016) Emergent collective chemotaxis without single-cell gradient sensing. Phys Rev Lett 116:098101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M (2010) Scale-free correlations in starling flocks. Proc Natl Acad Sci USA 107(26):11865–11870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheney DL, Seyfarth RM (1990) How monkeys see the world: inside the mind of another species. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Costa LDF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242

    Article  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxtony GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11

    Article  PubMed  Google Scholar 

  • Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516

    Article  CAS  PubMed  Google Scholar 

  • Deneubourg JL, Goss S (1989) Collective patterns and decision-making. Ethol Ecol Evol 1:295–311

    Article  Google Scholar 

  • Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180

    Article  PubMed  Google Scholar 

  • Dostie MJ, Lusseau D, Bonnell T, Clarke PMR, Chaplin G, Kienzle S, Barrett L, Henzi SP (2016) Proof of principle: the adaptive geometry of social foragers. Anim Behav 119:173–178

    Article  Google Scholar 

  • Dunbar RIM (1988) Primate social systems. Chapman & Hall, London, UK

    Book  Google Scholar 

  • Flack JC (2012) Multiple time-scales and the developmental dynamics of social systems. Philos Trans R Soc B 367:1802–1810

    Article  Google Scholar 

  • Flack JC, Girvan M, de Waal FBM, Krakauer DC (2006) Policing stabilizes construction of social niches in primates. Nature 439:426–429

    Article  CAS  PubMed  Google Scholar 

  • Gallese V, Goldman A (1998) Mirror neurons and the simulation theory of mind-reading. Trends Cogn Sci 2:493–501

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Barzel B, Barabási AL (2016) Universal resilience patterns in complex networks. Nature 530:307–312

    Article  CAS  PubMed  Google Scholar 

  • Getz WM, Saltz D (2008) A framework for generating and analyzing movement paths on ecological landscapes. Proc Natl Acad Sci USA 105(49):19066–19071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginelli F, Peruani F, Pillot M-H, Chaté H, Theraulaz T, Bon R (2015) Intermittent collective dynamics emerge from conflicting imperatives in sheep herds. Proc Natl Acad Sci USA 112:12729–12734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemelrijk CK (1999) An individual-orientated model of the emergence of despotic and egalitarian societies. Proc R Soc B Biol Sci 266(1417):361–369

    Article  Google Scholar 

  • Hemelrijk CK (2002) Understanding social behaviour with the help of complexity science (invited article). Ethology 108(8):655–671

    Article  Google Scholar 

  • Hemelrijk CK (2013) Simulating complexity of animal social behaviour. In: Edmonds B, Meyer R (eds) Simulating social complexity: understanding complex systems. Springer-Verlag, Berlin, pp 581–615

    Chapter  Google Scholar 

  • Hogeweg P, Hesper B (1983) The ontogeny of the interaction structure in bumble bee colonies: a MIRROR model. Behav Ecol Sociobiol 12:271–283

    Article  Google Scholar 

  • Humphrey N (1976) The social function of intellect. In: Bateson PPG, Hinde RA (eds) Growing points in ethology. Cambridge University Press, Cambridge, MA, pp 303–317

    Google Scholar 

  • Jolly A (1966) Lemur social behaviour and primate intelligence. Science 153:501–506

    Article  CAS  PubMed  Google Scholar 

  • Kanngiesser P, Sueur C, Riedl K, Grossmann J, Call J (2011) Grooming network cohesion and the role of individuals in a captive Chimpanzee group. Am J Primatol 73:758–767

    Article  PubMed  Google Scholar 

  • King AJ, Sueur C, Huchard E, Cowlishaw G (2011) A rule-of-thumb based on social affiliation explains collective movements in desert baboons. Anim Behav 82:1337–1345

    Article  Google Scholar 

  • Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629–4632

    Article  CAS  PubMed  Google Scholar 

  • Lusseau D, Newman MEJ (2004) Identifying the role that animals play in their social networks. Proc R Soc Lond B 271:S477–S481

    Article  Google Scholar 

  • Marcoux M, Lusseau D (2013) Network modularity promotes cooperation. J Theor Biol 324:103–108

    Article  PubMed  Google Scholar 

  • Marsili M, Vega-Redondo F, Frantisek Slanina F (2004) The rise and fall of a networked society: a formal model. Proc Natl Acad Sci USA 101(6):1439–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason WA, Jones A, Goldstone RL (2008) Propagation of innovations in networked groups. J Exp Psychol 137(3):422–433

    Article  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  CAS  PubMed  Google Scholar 

  • Mitani JC, Grether GF, Rodman PS, Priatna D (1991) Association among wild orang-utans: sociality, passive aggregations or chance? Anim Behav 42:33–46

    Article  Google Scholar 

  • Mokross K, Ryder TB, Correa Cortes M, Wolfe JD, Stouffer PC (2014) Decay of interspecific avian flock networks along a disturbance gradient in Amazonia. Proc R Soc B 281:20132599

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68:036122

    Article  CAS  Google Scholar 

  • Nowak MA, Sigmund K (1998) Evolution of indirect reciprocity by image scoring. Nature 393:573–577

    Article  CAS  PubMed  Google Scholar 

  • Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Mod Phys 87:925–979

    Article  Google Scholar 

  • Pinter-Wollman N, Hobson EA, Smith JE, Edelman AJ et al (2014) The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav Ecol 25(2):242–255

    Article  Google Scholar 

  • Ramos-Fernandez G, Boyer D, Gomez VP (2006) A complex social structure with fission-fusion properties can emerge from a simple foraging model. Behav Ecol Sociobiol 60:536–549

    Article  Google Scholar 

  • Santos FC, Pacheco JM (2005) Scale-free networks provide a unifying framework for the emergence of cooperation. Phys Rev Lett 95:098104

    Article  CAS  PubMed  Google Scholar 

  • Silk JB, Alberts SC, Altmann J (2004) Patterns of coalition formation by adult female baboons in Amboseli, Kenya. Anim Behav 67:573–582

    Article  Google Scholar 

  • Smith JE, Van Horn RC, Powning KS, Cole AR, Graham KE, Memenis SK, Holekamp KE (2010) Evolutionary forces favoring intragroup coalitions among spotted hyenas and other animals. Behav Ecol 21:284–303

    Article  Google Scholar 

  • Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC (2015) Shared decision-making drives collective movement in wild baboons. Science 348:1358–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugardjito J, Te Boekhorst IJA, Van Hooff JARAM (1987) Ecological constraints on the grouping of wild orang-utans (Pongo pygmaeus) in the Gunung Leuser National Park, Sumatra, Indonesia. Int J Primatol 8:17–41

    Article  Google Scholar 

  • te Boekhorst IJ, Hogeweg P (1994) Effects of tree size on travelband formation in orang-utans: data analysis suggested by a model study. In: Brooks R, Maes P (eds) Artificial life IV. MIT Press, Cambridge, pp 119–129

    Google Scholar 

  • Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226–1229

    Article  CAS  PubMed  Google Scholar 

  • Voelkl B, Kasper C (2009) Social structure of primate interaction networks facilitates the emergence of cooperation. Biol Lett 5(4):462–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson WG, Richards SA (2000) Consuming and grouping: resource-mediated aggregation. Ecol Lett 3:175–180

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from DGPA-PAPIIT grant IN105015, CONACYT grant 157656 and Instituto Politecnico Nacional. We thank Louise Barrett for fruitful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Boyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyer, D., Ramos-Fernandez, G. (2018). Contribution of Social Network Analysis and Collective Phenomena to Understanding Social Complexity and Cognition. In: Di Paolo, L.D., Di Vincenzo, F., De Petrillo, F. (eds) Evolution of Primate Social Cognition. Interdisciplinary Evolution Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-93776-2_8

Download citation

Publish with us

Policies and ethics