Skip to main content

Open Quantum Systems Dynamics

  • Chapter
  • First Online:
Thermodynamics and Synchronization in Open Quantum Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 789 Accesses

Abstract

In the previous chapter we reviewed a number of fundamental concepts and elements needed to build a satisfactory description of open quantum systems. We are now in position to properly focus on the dynamical evolution of open quantum systems and its main properties. In the framework of open quantum systems the interaction of a system with its surroundings induces a noise affecting the evolution of the system of interest. This noise appears as a result of neglecting or averaging over the complete isolated evolution of system plus environment, which allows us to obtain an approximate effective description of the open system dynamics which is mathematically tractable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Rivas, S.F. Huelga, Open Quantum Systems: An Introduction (Springer, Berlin, 2012)

    Book  Google Scholar 

  2. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  3. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993)

    MATH  Google Scholar 

  4. C. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer, Berlin, 2004)

    MATH  Google Scholar 

  5. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  6. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  7. E.B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976)

    MATH  Google Scholar 

  8. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  9. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821–825 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  10. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002)

    MATH  Google Scholar 

  11. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  12. G. Lindblad, Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Sagawa, Second law-like inequalities with quantum relative entropy: an introduction, in Lectures on Quantum Computing, Thermodynamics and Statistical Physics, ed. by M. Nakahara. Kinki University Series on Quantum Computing, vol. 8 (World Scientific, New Jersey, 2013)

    Google Scholar 

  14. K. Kraus, A. Böhm, J.D. Dollard, W.H. Wootters, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics (Springer, Berlin, 1983)

    Book  Google Scholar 

  15. D. Salgado, J.L. Sánchez-Gómez, M. Ferrero, Evolution of any finite open quantum system always admits a Kraus-type representation, although it is not always completely positive. Phys. Rev. A 70, 054102 (2004)

    Article  ADS  Google Scholar 

  16. D.M. Ton, L.C. Kwek, C.H. Oh, J.-L. Chen, L. Ma, Operatorsum representation of time-dependent density operators and its applications. Phys. Rev. A 69, 054102 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. W.F. Stinespring, Positive functions on C*-algebras. Proc. Am. Math. Soc. 6, 211–316 (1955)

    MathSciNet  MATH  Google Scholar 

  18. A.S. Holevo, V. Giovannetti, Quantum channels and their entropic characteristics. Rep. Prog. Phys. 75, 046001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Srikanth, S. Banerjee, Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

  20. H.-P. Breuer, E.-M. Laine, J. Piilo, Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Rivas, S.F. Huelga, M.B. Plenio, Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Colloquium: non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  23. S. Haroche, J.M. Raimond, Exploring the quantum: atoms, cavities and photons, Oxford graduate texts (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  24. W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001)

    Book  Google Scholar 

  25. H. Spohn, An algebraic condition for the approach to equilibrium of an open N-level system. Lett. Math. Phys. 2, 33–38 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  26. E.T. Jaynes, F.W. Cummings, Comparison of Quantum and semiclassical radiation theories with applications to the beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  27. H. Paul, Induzierte Emission bei starker Einstrahlung. Ann. Phys. (Leipzig) 11, 411–412 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  28. V. Scarani, M. Ziman, P. Stelmachovic, N. Gisin, V. Buzek, Thermalizing quantum machines: dissipation and entanglement. Phys. Rev. Lett. 88, 097905 (2002)

    Article  ADS  Google Scholar 

  29. B.M. Terhal, D.P. Di Vincenzo, Problem of equilibration and the computation of correlation functions on a quantum computer. Phys. Rev. A 61, 022301 (2000)

    Article  ADS  Google Scholar 

  30. M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2008)

    MATH  Google Scholar 

  31. T. Brandes, Quantum dissipation, in Lectures on Background to Quantum Information, UMIST-Bradford Lectures on Background to Quantum Information Theory (2003)

    Google Scholar 

  32. X.L. Huan, T. Wang, X.X. Yi, Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  33. G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)

    Article  ADS  Google Scholar 

  34. A.O. Caldeira, A.J. Leggett, Path integral approach to quantum Brownian motion. Phys. A 121, 587–616 (1983)

    Article  MathSciNet  Google Scholar 

  35. P. Hänggi, G.-L. Ingold, Fundamental aspects of quantum Brownian motion. Chaos 15, 026105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  36. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    Article  ADS  Google Scholar 

  37. M. Gross, S. Haroche, Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982)

    Article  ADS  Google Scholar 

  38. G.M. Palma, K.-A. Suominen, A.K. Ekert, Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  39. S.-B. Shim, M. Imboden, P. Mohanty, Synchronized oscillation in coupled nanomechanical oscillators. Science 316, 95 (2007)

    Article  ADS  Google Scholar 

  40. G. Heinrich, M. Ludwig, J. Qian, B. Kubala, F. Marquardt, Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011)

    Article  ADS  Google Scholar 

  41. M. Zhang, G.S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109, 233906 (2012)

    Article  ADS  Google Scholar 

  42. C.A. Holmes, C.P. Meaney, G.J. Milburn, Synchronization of many nanomechanical resonators coupled via a common cavity field. Phys. Rev. E 85, 066203 (2012)

    Article  ADS  Google Scholar 

  43. M.A. Cazalilla, F. Sols, F. Guinea, Dissipation-driven quantum phase transitions in a Tomonaga-Luttinger liquid electrostatically coupled to a metallic gate. Phys. Rev. Lett. 97, 076401 (2006)

    Article  ADS  Google Scholar 

  44. M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006)

    Article  Google Scholar 

  45. T. Prosen, I. Pižorn, Quantum phase transition in a far-from- equilibrium steady state of an XY spin chain. Phys. Rev. Lett. 101, 105701 (2008)

    Article  ADS  Google Scholar 

  46. S. Diehl, A. Tomadin, A. Micheli, R. Fazio, P. Zoller, Dynamical phase transitions and instabilities in open atomic many- body systems. Phys. Rev. Lett. 105, 015702 (2010)

    Article  ADS  Google Scholar 

  47. E.G. dalla Torre, E. Demler, T. Giamarchi, E. Altman, Quantum critical states and phase transitions in the presence of nonequilibrium noise. Nat. Phys. 6, 806–810 (2010)

    Article  ADS  Google Scholar 

  48. D. Poletti, J.-S. Bernier, A. Georges, C. Kollath, Interaction- induced impeding of decoherence and anomalous diffusion. Phys. Rev. Lett. 109, 045302 (2012)

    Article  ADS  Google Scholar 

  49. I. Buluta, F. Nori, Quantum simulators. Science 326, 108–111 (2009)

    Article  ADS  Google Scholar 

  50. I.M. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)

    Article  ADS  Google Scholar 

  51. J.T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt, An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011)

    Article  ADS  Google Scholar 

  52. Y. Lin, J.P. Gaebler, F. Reiter, T.R. Tan, R. Bowler, A.S. Sorensen, D. Leibfried, D.J. Wineland, Dissipative production of a maximally entangled steady state of two quantum bits. Nature (London) 504, 415–418 (2013)

    Article  ADS  Google Scholar 

  53. P. Schindler, M. Muller, D. Nigg, J.T. Barreiro, E.A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller, R. Blatt, Quantum simulation of dynamical maps with trapped ions. Nat. Phys. 9, 361–367 (2013)

    Article  Google Scholar 

  54. G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, H. Ott, Controlling the dynamics of an open many-body quantum system with localized dissipation. Phys. Rev. Lett. 110, 035302 (2013)

    Article  ADS  Google Scholar 

  55. R. Labouvie, B. Santra, S. Heun, H. Ott, Bistability in a driven-dissipative superfluid. Phys. Rev. Lett. 116, 235302 (2016)

    Article  ADS  Google Scholar 

  56. W.G. Unruh, Maintaining coherence in quantum computers. Phys. Rev. A 51, 992–997 (1995)

    Article  ADS  Google Scholar 

  57. A.K. Rajagopal, R.W. Rendell, Decoherence, correlation, and entanglement in a pair of coupled quantum dissipative oscillators. Phys. Rev. A 63, 022116 (2001)

    Article  ADS  Google Scholar 

  58. K. Zyczkowski, P. Horodecki, M. Horodecki, R. Horodecki, Dynamics of quantum entanglement. Phys. Rev. A 65, 012101 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  59. P. Zanardi, Dissipation and decoherence in a quantum register. Phys. Rev. A 57, 3276–3284 (1998)

    Article  ADS  Google Scholar 

  60. J.H. Reina, L. Quiroga, N.F. Johnson, Decoherence of quantum registers. Phys. Rev. A 65, 032326 (2002)

    Article  ADS  Google Scholar 

  61. R. Doll, M. Wubs, P. Hänggi, S. Kohler, Limitation of entanglement due to spatial qubit separation. Europhys. Lett. 74, 547–553 (2006)

    Article  ADS  Google Scholar 

  62. T. Zell, F. Queisser, R. Klesse, Distance dependence of entanglement generation via a bosonic heat bath. Phys. Rev. Lett. 102, 160501 (2009)

    Article  ADS  Google Scholar 

  63. D.P.S. McCutcheon, A. Nazir, S. Bose, A.J. Fisher, Longlived spin entanglement induced by a spatially correlated thermal bath. Phys. Rev. A 80, 022337 (2009)

    Article  ADS  Google Scholar 

  64. P. Zanardi, M. Rasetti, Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  65. L.-M. Duan, G.-C. Guo, Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953 (1997)

    Article  ADS  Google Scholar 

  66. D.A. Lidar, I.L. Chuang, K.B. Whaley, Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  67. A. Beige, D. Braun, B. Tregenna, P.L. Knight, Quantum computing using dissipation to remain in a decoherence-free subspace. Phys. Rev. Lett. 85, 1762–1765 (2000)

    Article  ADS  Google Scholar 

  68. F. Galve, A. Mandarino, M.G.A. Paris, C. Benedetti, R. Zambrini, Microscopic description for the emergence of collective dissipation in extended quantum systems. Sci. Rep. 7, 42050 (2017), arXiv:1606.03390

    Article  ADS  Google Scholar 

  69. J. Dalibard, Y. Castin, K. Mølmer, Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68, 580–583 (1992)

    Article  ADS  Google Scholar 

  70. R. Dum, P. Zoller, H. Ritsch, Monte Carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A 45, 4879–4887 (1992)

    Article  ADS  Google Scholar 

  71. C.W. Gardiner, A.S. Parkins, P. Zoller, Wave-function quantum stochastic differential equations and quantum-jump simulation methods. Phys. Rev. A 46, 4363–4381 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  72. K. Mølmer, Y. Castin, J. Dalibard, Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B 10, 524–538 (1993)

    Article  ADS  Google Scholar 

  73. H.M. Wiseman, G.J. Milburn, Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. Phys. Rev. A 47, 1652–1666 (1993)

    Article  ADS  Google Scholar 

  74. M.B. Plenio, P.L. Knight, The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101–144 (1998)

    Article  ADS  Google Scholar 

  75. A.J. Daley, Quantum trajectories and open many-body quantum systems. Adv. Phys. 63, 77–149 (2014)

    Article  ADS  Google Scholar 

  76. P. Marte, R. Dum, R. Taïeb, P.D. Lett, P. Zoller, Quantum wave function simulation of the resonance fluorescence spectrum from one-dimensional optical molasses. Phys. Rev. Lett. 71, 1335–1338 (1993)

    Article  ADS  Google Scholar 

  77. Y. Castin, K. Mølmer, Monte Carlo wave-function analysis of 3D optical molasses. Phys. Rev. Lett. 74, 3772–3775 (1995)

    Article  ADS  Google Scholar 

  78. H.J. Carmichael, Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett. 70, 2273–2276 (1993)

    Article  ADS  Google Scholar 

  79. H. Ammann, R. Gray, I. Shvarchuck, N. Christensen, Quantum delta-kicked rotor: experimental observation of decoherence. Phys. Rev. Lett. 80, 4111–4115 (1998)

    Article  ADS  Google Scholar 

  80. E. Schrödinger, Are there quantum jumps? Part I. Br. J. Philos. Sci. 3, 109–123 (1952)

    Article  Google Scholar 

  81. E. Schrödinger, Are there quantum jumps? Part II. Br. J. Philos. Sci. 3, 233–242 (1952)

    Article  Google Scholar 

  82. W. Nagourney, J. Sandberg, H. Dehmelt, Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986)

    Article  ADS  Google Scholar 

  83. J.C. Bergquist, R.G. Hulet, W.M. Itano, D.J. Wineland, Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986)

    Article  ADS  Google Scholar 

  84. T. Sauter, W. Neuhauser, R. Blatt, P.E. Toschek, Observation of quantum jumps. Phys. Rev. Lett. 57, 1696–1698 (1986)

    Article  ADS  Google Scholar 

  85. D.J. Wineland, Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013)

    Article  ADS  Google Scholar 

  86. S. Haroche, Nobel Lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083 (2013)

    Article  ADS  Google Scholar 

  87. A.N. Vamivakas, C.-Y. Lu, C. Matthiesen, Y. Zhao, S. Falt, A. Badolato, M. Atature, Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010)

    Article  ADS  Google Scholar 

  88. J.J. Pla, K.Y. Tan, J.P. Dehollain, W.H. Lim, J.J.L. Morton, F.A. Zwanenburg, D.N. Jamieson, A.S. Dzurak, A. Morello, High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013)

    Article  ADS  Google Scholar 

  89. K.W. Murch, S.J. Weber, C. Macklin, I. Siddiqi, Observing single quantum trajectories of a superconducting quantum bit. Nature 502, 211–214 (2013)

    Article  ADS  Google Scholar 

  90. S.J. Weber, A. Chantasri, J. Dressel, A.N. Jordan, K.W. Murch, I. Siddiqi, Mapping the optimal route between two quantum states. Nature 511, 570–573 (2014)

    Article  ADS  Google Scholar 

  91. C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, S. Haroche, Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007)

    Article  ADS  Google Scholar 

  92. K. Jacobs, D.A. Steck, A straightforward introduction to continuous quantum measurement. Contemp. Phys. 47, 279–303 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Manzano Paule .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manzano Paule, G. (2018). Open Quantum Systems Dynamics. In: Thermodynamics and Synchronization in Open Quantum Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93964-3_2

Download citation

Publish with us

Policies and ethics