Skip to main content

Using Noisy Binary Search for Differentially Private Anomaly Detection

  • Conference paper
  • First Online:
Cyber Security Cryptography and Machine Learning (CSCML 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10879))

Abstract

In this paper, we study differential privacy in noisy search. This problem is connected to noisy group testing: the goal is to find a defective or anomalous item within a group using only aggregate group queries, not individual queries. Differentially private noisy group testing has the potential to be used for anomaly detection in a way that provides differential privacy to the non-anomalous individuals while still helping to allow the anomalous individuals to be located. To do this, we introduce the notion of anomaly-restricted differential privacy. We then show that noisy group testing can be used to satisfy anomaly-restricted differential privacy while still narrowing down the location of the anomalous samples, and evaluate our approach experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Chu, A., Goodfello, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communication Security (CCS 2016), Vienna, Austria, 24–28 October 2016, pp. 303–318. ACM (2016). https://doi.org/10.1145/2976749.2978318

  2. Agyemang, M., Barker, K., Alhajj, R.: A comprehensive survey of numeric and symbolic outlier mining techniques. Intell. Data Anal. 10(6), 521–538 (2006)

    Google Scholar 

  3. Atia, G.K., Saligrama, V.: Boolean compressed sensing and noisy group testing. IEEE Trans. Inf. Theory 58(3), 1880–1901 (2012). https://doi.org/10.1109/TIT.2011.2178156

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Or, M., Hassidim, A.: The Bayesian learner is optimal for noisy binary search (and pretty good for quantum as well). In: 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 221–230 (2008). https://doi.org/10.1109/FOCS.2008.58

  5. Berger, T., Mehravari, N., Towsley, D., Wolf, J.: Random multiple-access communication and group testing. IEEE Trans. Commun. 32(7), 769–779 (1984). https://doi.org/10.1109/TCOM.1984.1096146

    Article  Google Scholar 

  6. Bun, M., Steinke, T.: Concentrated differential privacy: simplifications, extensions, and lower bounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 635–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_24

    Chapter  Google Scholar 

  7. Burnashev, M.V., Zigangirov, K.S.: An interval estimation problem for controlled observations. Probl. Inf. Transm. 10, 223–231 (1974)

    Google Scholar 

  8. Cai, S., Jahangoshahi, M., Bakshi, M., Jaggi, S.: GROTESQUE: noisy group testing (quick and efficient). Technical report arXiv:1307.2811 [cs.IT], ArXiV, July 2013. http://arxiv.org/abs/1307.2811

  9. Calderbank, R., Howard, S., Jafarpour, S.: Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE J. Sel. Topics Sig. Process. 4(2), 358–743 (2010). https://doi.org/10.1109/JSTSP.2010.2043161

    Article  Google Scholar 

  10. Chan, C.L., Jaggi, S., Saligrama, V., Agnihotri, S.: Non-adaptive group testing: explicit bounds and novel algorithms. IEEE Trans. Inf. Theory 60(5), 3019–3035 (2014). https://doi.org/10.1109/TIT.2014.2310477

    Article  MathSciNet  MATH  Google Scholar 

  11. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  12. Chen, H.B., Hwang, F.K.: A survey on nonadaptive group testing algorithms through the angle of decoding. J. Comb. Optim. 15(1), 49–59 (2008). https://doi.org/10.1007/s10878-007-9083-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Department of Homeland Security: Screening at speed (2017). https://www.dhs.gov/science-and-technology/apex-screening-speed. Accessed 3 Aug 2017

  14. Dorfman, R.: The detection of defective members of large populations. Ann. Math. Stat. 14(4), 436–440 (1943). http://www.jstor.org/stable/2235930

    Article  Google Scholar 

  15. Du, D.Z., Hwang, F.K.: Combinatorial group testing and its applications, vol. 12, 2nd edn. World Scientific (1999). https://doi.org/10.1142/4252

  16. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1. https://www.microsoft.com/en-us/research/publication/differential-privacy/

    Chapter  Google Scholar 

  17. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)

    Article  Google Scholar 

  18. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  19. Dwork, C., Rothblum, G., Vadhan, S.: Boosting and differential privacy. In: 2010 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), Las Vegas, NV, pp. 51–60, October 2010. https://doi.org/10.1109/FOCS.2010.12

  20. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS 2014), pp. 1054–1067 (2014). https://doi.org/10.1145/2660267.2660348

  21. Evans, J.: What Apple users need to know about differential privacy. IComputerWorld, June 2016. http://www.computerworld.com/article/3088179/apple-mac/what-apple-users-need-to-know-about-differential-privacy.html

  22. Ghassemi, M., Sarwate, A.D., Wright, R.N.: Differentially private online active learning with applications to anomaly detection. In: Proceedings of the 9th ACM Workshop on Artificial Intelligence and Security (AISec), Vienna, Austria, pp. 117–128, October 2016

    Google Scholar 

  23. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  Google Scholar 

  24. Horstein, M.: Sequential transmission using noiseless feedback. IEEE Trans. Inf. Theory 9(3), 136–143 (1963). https://doi.org/10.1109/TIT.1963.1057832

    Article  MATH  Google Scholar 

  25. Jedynak, B., Frazier, P.I., Sznitman, R.: Twenty questions with noise: Bayes optimal policies for entropy loss. J. Appl. Probab. 49(1), 114–136 (2012). https://doi.org/10.1239/jap/1331216837

    Article  MathSciNet  MATH  Google Scholar 

  26. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential privacy. IEEE Trans. Inf. Theory 63(6) (2017). https://doi.org/10.1109/TIT.2017.2685505

    Article  MathSciNet  Google Scholar 

  27. Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy: theory meets practice on the map. In: IEEE 24th International Conference on Data Engineering (ICDE), pp. 277–286 (2008). https://doi.org/10.1109/ICDE.2008.4497436

  28. Macula, A.J., Popyack, L.J.: A group testing method for finding patterns in data. Discrete Appl. Math. 144(1–2), 149–157 (2004). https://doi.org/10.1016/j.dam.2003.07.009

    Article  MathSciNet  MATH  Google Scholar 

  29. Mazumdar, A.: Nonadaptive group testing with random set of defectives. IEEE Trans. Inf. Theory 62(12), 7522–7531 (2016). http://ieeexplore.ieee.org/document/7577749/

    Article  MathSciNet  Google Scholar 

  30. Mazumdar, A., Barg, A.: Sparse-recovery properties of statistical RIP matrices. In: Proceedings of the 49th Allerton Conference on Communication, Control and Computing, pp. 9–12, September 2011. https://doi.org/10.1109/Allerton.2011.6120142

  31. Mir, D.J., Isaacman, S., Cáceres, R., Martonosi, M., Wright, R.N.: DP-WHERE: differentially private modeling of human mobility. In: Proceedings of the 2013 IEEE International Conference on Big Data, October 2013. https://doi.org/10.1109/BigData.2013.6691626

  32. Ngo, H.Q., Du, D.Z.: A survey on combinatorial group testing algorithms with applications to DNA library screening. In: Du, D.Z., Pardalos, P.M., Wang, J. (eds.) Discrete Mathematical Problems with Medical Applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 55. AMS (2000)

    Google Scholar 

  33. Nowak, R.: Generalized binary search. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 568–574. IEEE (2008)

    Google Scholar 

  34. Nowak, R.: Noisy generalized binary search. In: Advances in Neural Information Processing Systems, pp. 1366–1374 (2009)

    Google Scholar 

  35. Waeber, R., Frazier, P.I., Henderson, S.G.: Bisection search with noisy responses. SIAM J. Control Optim. 51(3), 2261–2279 (2013)

    Article  MathSciNet  Google Scholar 

  36. Wasserman, L., Zhou, S.: A statistical framework for differential privacy. J. Am. Stat. Assoc. 105(489), 375–389 (2010). https://doi.org/10.1198/jasa.2009.tm08651

    Article  MathSciNet  MATH  Google Scholar 

  37. Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf. Theory 31(2), 185–191 (1985). https://doi.org/10.1109/TIT.1985.1057026

    Article  MathSciNet  MATH  Google Scholar 

  38. Yahoo Labs: S5 - a labeled anomaly detection dataset, version 1.0 (2016). https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

Download references

Acknowledgements

This work was partially supported by NSF under award CCF-1453432, DARPA and SSC Pacific under contract N66001-15-C-4070, and DHS under award 2009-ST-061-CCI002 and contract HSHQDC-16-A-B0005/HSHQDC-16-J-00371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Bittner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bittner, D.M., Sarwate, A.D., Wright, R.N. (2018). Using Noisy Binary Search for Differentially Private Anomaly Detection. In: Dinur, I., Dolev, S., Lodha, S. (eds) Cyber Security Cryptography and Machine Learning. CSCML 2018. Lecture Notes in Computer Science(), vol 10879. Springer, Cham. https://doi.org/10.1007/978-3-319-94147-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94147-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94146-2

  • Online ISBN: 978-3-319-94147-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics