Skip to main content

Granular Materials: Micromechanical Approaches of Model Systems

  • Chapter
  • First Online:
Mesoscale Models

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 587))

  • 930 Accesses

Abstract

An overview is given of micromechanical approaches to the rheology of granular materials, from solidlike granular packs to large plastic strains and dense inertial flows, which essentially relies on the numerical simulation (by the “discrete element method” or DEM) of simple model systems. The main features of contact laws are presented, and then it is insisted on the importance of the geometry of disordered granular assemblies, such that some details of contact interactions are in fact often irrelevant. Some salient results, as obtained from DEM studies over the last decades, are presented about the variety of microstructures and internal states, depending on assembling processes; on elasticity and its (limited) role in quasistatic granular behavior; on plastic strains and the fundamental concept of critical states, and on its recent applications to the rheology of dense granular flows and suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • I. Agnolin, J.-N. Roux, Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E 76(6), 061302 (2007a)

    Google Scholar 

  • I. Agnolin, J.-N. Roux, Internal states of model isotropic granular packings. II. Compression and pressure cycles. Phys. Rev. E 76(6), 061303 (2007b)

    Google Scholar 

  • I. Agnolin, J.-N. Roux, Internal states of model isotropic granular packings. III. Elastic properties. Phys. Rev. E 76(6), 061304 (2007c)

    Google Scholar 

  • B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media: Between Fluid and Solid (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  • N.W. Ashcroft, N.D. Mermin, D. Wei, Solid State Physics (Cengage Learning Asia, Singapore, 2016)

    Google Scholar 

  • T. Aste, D. Weaire, The Pursuit of Perfect Packing (Institute of Physics Publishing, Bristol, 2000)

    MATH  Google Scholar 

  • T. Aste, M. Saadatfar, T.J. Senden, The geometrical structure of disordered sphere packings. Phys. Rev. E 71, 061302 (2005)

    Article  Google Scholar 

  • É. Azéma, F. Radjaï, Internal structure of inertial granular flows. Phys. Rev. Lett. 112, 078001 (2014)

    Article  Google Scholar 

  • É. Azéma, F. Radjaï, G. Saussine, Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41, 729–741 (2009)

    Article  Google Scholar 

  • É. Azéma, Y. Descantes, N. Roquet, J.-N. Roux, F. Chevoir, Discrete simulation of dense flows of polyhedral grains down a rough inclined plane. Phys. Rev. E 86, 031303 (2012)

    Article  Google Scholar 

  • É. Azéma, F. Radjaï, F. Dubois, Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E 87, 062223 (2013)

    Google Scholar 

  • É. Azéma, F. Radjaï, J.-N. Roux, Internal friction and absence of dilatancy of packings of frictionless polygons. Phys. Rev. E 91, 010202(R) (2015)

    Google Scholar 

  • T. Baumberger, C. Caroli, Solid friction, from stick-slip down to pinning and aging. Adv. Phys. 55, 279–348 (2006)

    Article  Google Scholar 

  • N. Benahmed, J. Canou, J.-C. Dupla, Structure initiale et propriétés de liquéfaction statique d’un sable. Comptes-Rendus Académie des Sciences, Mécanique 332, 887–894 (2004)

    Article  Google Scholar 

  • F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids, vol. I (Clarendon Press, Oxford, 1950)

    MATH  Google Scholar 

  • F. Boyer, É. Guazzelli, O. Pouliquen, Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301:1–5 (2011)

    Google Scholar 

  • N.V. Brilliantov, T. Pöschel, Collision of adhesive viscoelastic particles, in The Physics of Granular Media, ed. by H. Hinrichsen, D.E. Wolf (Wiley-VCH, Berlin, 2004), pp. 189–209

    MATH  Google Scholar 

  • C.S. Campbell, Granular material flows – an overview. Powder Technol. 162, 208–229 (2006)

    Article  Google Scholar 

  • C. Cassar, M. Nicolas, O. Pouliquen, Submarine granular flows down inclined plane. Phys. Fluids 17, 103301 (2005)

    Article  Google Scholar 

  • A. Castellanos, The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005)

    Article  Google Scholar 

  • P. Chaudhuri, L. Berthier, S. Sastry, Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions. Phys. Rev. Lett. 104, 165701 (2010)

    Article  Google Scholar 

  • J. Christoffersen, M.M. Mehrabadi, S. Nemat-Nasser, A micromechanical description of granular material behavior. J. Appl. Mech. 48, 339–344 (1981)

    Article  Google Scholar 

  • G. Combe, J.-N. Roux, Strain versus stress in a model granular material: a devil’s staircase. Phys. Rev. Lett. 85, 3628–3631 (2000)

    Article  Google Scholar 

  • G. Combe, J.-N. Roux, Construction of granular assemblies under satic loading, in Discrete-Element Modeling of Granular Materials, chap. 6 (Wiley-ISTE, London, 2011), pp. 153–180

    Google Scholar 

  • S.N. Coppersmith, C.H. Liu, S. Majumdar, O. Narayan, T.A. Witten, Model for force fluctuations in bead packs. Phys. Rev. E 53, 4673–4685 (1996)

    Article  Google Scholar 

  • F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, F. Chevoir, Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Article  Google Scholar 

  • R. Deluzarche, B. Cambou, Discrete numerical modelling of rockfill dams. Int. J. Numer. Anal. Methods Geomech. 30, 1075–1096 (2006)

    Article  Google Scholar 

  • H. di Benedetto, T. Doanh, H. Geoffroy, C. Sauzéat (eds.), Deformation Characteristics of Geomaterials: Recent Investigations and Prospects (Swets and Zeitlinger, Lisse, 2003)

    Google Scholar 

  • A. Donev, R. Connelly, F.H. Stillinger, S. Torquato, Hypostatic jammed packings of nonspherical hard particles: ellipses and ellipsoids. Phys. Rev. E 75, 051304 (2007)

    Article  MathSciNet  Google Scholar 

  • D. Elata, J.G. Berryman, Contact force-displacement laws and the mechanical behavior of random packs of identical spheres. Mech. Mater. 24, 229–240 (1996)

    Article  Google Scholar 

  • S. Emam, J.-N. Roux, J. Canou, A. Corfdir, J.-C. Dupla, Granular packings assembled by rain deposition: an experimental and numerical study, in Powders and Grains 2005, ed. by R. García Rojo, H.J. Herrmann, S. McNamara (Balkema, Leiden, 2005), pp. 49–52

    Google Scholar 

  • N. Estrada, É. Azéma, F. Radjaï, A. Taboada, Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E 84, 011306 (2011)

    Article  Google Scholar 

  • Y. Forterre, O. Pouliquen, Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  Google Scholar 

  • GDR MiDi, On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Google Scholar 

  • F.A. Gilabert, J.-N. Roux, A. Castellanos, Computer simulation of model cohesive powders: Influence of assembling procedure and contact laws on low consolidation states. Phys. Rev. E 75(1), 011303 (2007)

    Google Scholar 

  • J.D. Goddard, A.K. Didwania, Computations of dilatancy and yield surfaces for assemblies of rigid frictional spheres. Q. J. Mech. Appl. Math. 51, 15–43 (1998)

    Article  MathSciNet  Google Scholar 

  • T. Hatano, Power-law friction in closely packed granular materials. Phys. Rev. E 75, 060301(R) (2007)

    Google Scholar 

  • J.N. Israelashvili, Intermolecular and Surface Forces (Academic, New York, 1991)

    Google Scholar 

  • K. Iwashita, M. Oda, Mechanics of Granular Materials: An Introduction (Taylor & Francis, Leiden, 1999)

    Google Scholar 

  • H.M. Jaeger, S.R. Nagel, R.P. Behringer, Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1273 (1996)

    Article  Google Scholar 

  • X. Jia, C. Caroli, B. Velický, Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett. 82, 1863–1866 (1999)

    Article  Google Scholar 

  • K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  • P. Jop, Y. Forterre, O. Pouliquen, A constitutive law for dense granular flow. Nature 441, 727–730 (2006)

    Article  Google Scholar 

  • M.H. Khalili, J.-N. Roux, J.-M. Pereira, S. Brisard, M. Bornert, A numerical study of one-dimensional compression of granular materials: I. Stress-strain behavior, microstructure and irreversibility. Phys. Rev. E 95, 032907 (2017)

    Google Scholar 

  • S. Khamseh, J.-N. Roux, F. Chevoir, Flow of wet granular materials: a numerical study. Phys. Rev. E 92, 022201 (2015)

    Article  Google Scholar 

  • M.R. Kuhn, Structured deformation in granular materials. Mech. Mater. 31, 407–429 (1999)

    Article  Google Scholar 

  • M.R. Kuhn, C.S. Chang, Stability, bifurcation and softening in discrete systems: a conceptual approach for granular materials. Int. J. Solids Struct. 43, 6026–6051 (2006)

    Article  Google Scholar 

  • R. Kuwano, R.J. Jardine, On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique 52, 727–749 (2002)

    Article  Google Scholar 

  • L. La Ragione, J.T. Jenkins, The initial response of an idealized granular material. Proc. R. Soc. A 63(2079), 735–758 (2007). ISSN 1364–5021

    Article  MathSciNet  Google Scholar 

  • P.V. Lade, J.M. Duncan, Elastoplastic stress-strain theory for cohesionless soil. J. Geotech. Eng. Div. 101, 1037–1053 (1975)

    Google Scholar 

  • A. Lemaître, J.-N. Roux, F. Chevoir, What do dry granular flows tell us about dense non-brownian suspension rheology? Rheol. Acta 48, 925–942 (2009)

    Article  Google Scholar 

  • G. Lian, C. Thornton, M.J. Adams, A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161(1), 138–147 (1993)

    Article  Google Scholar 

  • C.E. Maloney, A. Lemaître, Amorphous systems in athermal, quasistatic shear. Phys. Rev. E 74, 016118 (2006)

    Article  Google Scholar 

  • M.T. Manzani, Y.F. Dafalias, A critical state two-surface plasticity model for sands. Géotechnique 47(2), 255–272 (1997)

    Article  Google Scholar 

  • D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer, Berlin, 2000)

    Book  Google Scholar 

  • N. Maw, J.R. Barber, J.N. Fawcett, Oblique impact of elastic spheres. Wear 38(1), 101–114 (1976)

    Article  Google Scholar 

  • S. McNamara, H.J. Herrmann, Quasirigidity: some uniqueness issues. Phys. Rev. E 74, 061303 (2006)

    Article  MathSciNet  Google Scholar 

  • R.D. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique forces. ASME J. Appl. Mech. 20, 327–340 (1953)

    MathSciNet  MATH  Google Scholar 

  • J.K. Mitchell, K. Soga, Fundamentals of Soil Behavior (Wiley, New York, 2005)

    Google Scholar 

  • R.M. Nedderman, Statics and Kinetics of Granular Materials (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  • S. Nemat-Nasser, M. Hori, Micromechanics. Overall Properties of Heterogeneous Materials (North-Holland, Amsterdam, 1993)

    Chapter  Google Scholar 

  • C. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68(1), 011306 (2003)

    Google Scholar 

  • C. O’Sullivan, Particulate Discrete Element Modeling, A Geomechanics Perspective (Spon Press, London, 2011)

    Google Scholar 

  • P.-E. Peyneau, J.-N. Roux, Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307 (2008a)

    Article  Google Scholar 

  • P.-E. Peyneau, J.-N. Roux, Solidlike behavior and anisotropy in rigid frictionless bead assemblies. Phys. Rev. E 78, 041307 (2008b)

    Article  Google Scholar 

  • O. Pitois, P. Moucheront, X. Chateau, Liquid bridge between two moving spheres: an experimental study of viscosity effects. J. Colloid Interface Sci. 231, 26–31 (2000)

    Article  Google Scholar 

  • N.S. Rad, M.T. Tumay, Factors affecting sand specimen preparation by raining. ASTM J. Geotech. Test. 10, 31–37 (1987)

    Article  Google Scholar 

  • F. Radjaï, Modeling force transmission in granular materials. C. R. Phys. 16(1), 3–9 (2015)

    Article  Google Scholar 

  • F. Radjaï, F. Dubois, Discrete-Element Modeling of Granular Materials (Wiley, New York, 2011)

    Google Scholar 

  • F. Radjaï, V. Richefeu, Bond anisotropy and cohesion of wet granular materials. Phil. Trans. R. Soc. A 367, 5123–5138 (2009a)

    Article  Google Scholar 

  • F. Radjaï, V. Richefeu, Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41, 715–728 (2009b)

    Article  Google Scholar 

  • F. Radjaï, S. Roux, Turbulentlike fluctuations in quasistatic flow of granular media. Phys. Rev. Lett. 89(6), 064302 (2002)

    Google Scholar 

  • F. Radjaï, D.E. Wolf, M. Jean, J.-J. Moreau, Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998)

    Article  Google Scholar 

  • F. Radjaï, S. Nezamabadi, S. Luding, J.-Y. Delenne (eds.), Powders and Grains 2017. EPJ Web of Conferences, vol. 140 (EDP Sciences, Les Ulis, 2017)

    Google Scholar 

  • R. Ramirez, T. Pöschel, N.V. Brilliantov, T. Schwager, Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60, 4465–4472 (1999)

    Article  Google Scholar 

  • O. Reynolds, On the dilatancy of media composed of rigid particles in contact. Philos. Mag. (5th Series) 20, 469–481 (1885)

    Google Scholar 

  • D. Richard, I. Iordanoff, Y. Berthier, M. Renouf, N. Fillot, Friction coefficient as a macroscopic view of local dissipation. J. Tribol. Trans. ASME 129, 829–835 (2007)

    Article  Google Scholar 

  • J.-N. Roux, Geometric origin of mechanical properties of granular materials. Phys. Rev. E 61, 6802–6836 (2000)

    Article  MathSciNet  Google Scholar 

  • J.-N. Roux, Pre-peak deformation of model granular materials: A DEM study, in Geomechanics from Micro to Macro, ed. by K. Soga, K. Kumar, G. Biscontin, M. Kuo. (CRC, Taylor & Francis, Boca Raton, London, 2015)

    Google Scholar 

  • J.-N. Roux, F. Chevoir, Dimensional analysis and control parameters, in Discrete-Element Modeling of Granular Materials, chap. 8 (Wiley-ISTE, London, 2011), pp. 199–232

    Google Scholar 

  • J.-N. Roux, G. Combe, Quasistatic rheology and the origins of strain. C. R. Phys. 3, 131–140 (2002)

    Article  Google Scholar 

  • J.-N. Roux, G. Combe, How granular materials deform in quasistatic conditions, in IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flow, ed. by J.D. Goddard, J.T. Jenkins, P. Giovine. AIP Conference Proceedings, vol. 1227 (2010), p. 260

    Google Scholar 

  • J.-N. Roux, G. Combe, Quasi-static methods, in Discrete-Element Modeling of Granular Materials, chap. 3 (Wiley-ISTE, London, 2011), pp. 67–101

    Google Scholar 

  • P. Sánchez, D. Scheeres, M. Hirabayashi, S. Tardivel, Looking into the evolution of granular asteroids in the Solar System, in Powders and Grains 2017, ed. by F. Radjaï, S. Nezamabadi, S. Luding, J.-Y. Delenne. EPJ Web of Conferences, vol. 140 (EDP Sciences, Les Ulis, 2017), p. 14004

    Google Scholar 

  • L.E. Silbert, D. Ertaş, G.S. Grest, T.C. Halsey, D. Levine, Geometry of frictionless and frictional sphere packings. Phys. Rev. E 65(3), 031304 (2002)

    Google Scholar 

  • S. Somfai, M. van Hecke, W.G. Ellenbroek, K. Shundyak, W. van Saarloos, Critical and noncritical jamming of frictional grains. Phys. Rev. E 75(2), 020301 (2007)

    Google Scholar 

  • A.S.J. Suiker, N.A. Fleck, Frictional collapse of granular assemblies. ASME J. Appl. Mech. 71, 350–358 (2004)

    Article  Google Scholar 

  • G. Szpiro, Kepler’s Conjecture (Wiley, New York, 2003)

    MATH  Google Scholar 

  • F. Tatsuoka, Impacts on geotechnical engineering of several recent findings from laboratory stress-strain tests on geomaterials, in Geotechnics for Roads, Rail Tracks and Earth Structures, ed. by G. Correia, H. Brandle (Balkema, Lisse, 2001), pp. 69–140

    Google Scholar 

  • V.-D. Than, Compression behavior of loose wet granular materials: experiments and discrete numerical simulations. PhD thesis, Université Paris Est (2017)

    Google Scholar 

  • V.-D. Than, S. Khamseh, A.-M. Tang, J.-M. Pereira, F. Chevoir, J.-N. Roux, Basic mechanical properties of wet granular materials: a DEM study. ASCE J. Eng. Mech. 143(SI1), C4016001 (2017)

    Article  Google Scholar 

  • M.F. Thorpe, P.M. Duxbury (eds.), Rigidity Theory and Applications. Fundamental Materials Research (Kluwer Academic, New York, 1998)

    Google Scholar 

  • C. Voivret, F. Radjaï, J.-Y. Delenne, M.S. El Youssoufi, Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102, 178001 (2009)

    Article  Google Scholar 

  • I. Volkov, M. Cieplak, J. Koplik, J.R. Banavar, Molecular dynamics simulations of crystallization of hard spheres. Phys. Rev. E 66(6), 061401 (2002)

    Google Scholar 

  • P.R. Welker, S.C. McNamara, What triggers failure in frictional granular assemblies? Phys. Rev. E 79, 061305 (2009)

    Article  MathSciNet  Google Scholar 

  • D.M. Wood, Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  • M. Wyart, On the rigidity of amorphous solids. Ann. Phys. Fr. 30, 1–96 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Noël Roux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roux, JN. (2019). Granular Materials: Micromechanical Approaches of Model Systems. In: Mesarovic, S., Forest, S., Zbib, H. (eds) Mesoscale Models. CISM International Centre for Mechanical Sciences, vol 587. Springer, Cham. https://doi.org/10.1007/978-3-319-94186-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94186-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94185-1

  • Online ISBN: 978-3-319-94186-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics