Skip to main content

Weeds, Herbicides and Plant Disease Management

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 31

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 31))

Abstract

Plants growing unwantedly in an agro-ecosystem are defined as weeds. Weeds modify crop plant growth, development and yield, not only through their competition for light, water, nutrients, but also through the establishment of ecological niches suitable for the growth and development of plant pathogens and pests, and the role they play as the host of hazardous organisms. Furthermore, some weeds produce allelopathic compounds that directly affect the growth and development of agricultural crops and even lead to their death. Such toxic compounds may be found in the leaf, flower, fruit, root, rhizome, and seed of the producing plants. To control weeds, various mechanical, agricultural, biological and chemical approaches are applied. Chemical control with herbicides is considered as the most easiest and attractive method applied in the control of weeds. Recently, compounds of biological origin have been introduced against weeds, of which mycoherbicides, of fungal origin, are the most famous group. Herbicides can impact the growth, development, reproduction, distribution , and survival of plant pathogens in several ways. Therefore, their rational use is considered as a vital part in integrated plant disease management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas Z, Akmal M, Saifullah Khan K, Fayyaz-ul-Hassan (2014) Effect of Buctril Super (bromoxynil) herbicide on soil microbial biomass and bacterial population. Braz Arch Biol Technol 57:9–14

    Article  CAS  Google Scholar 

  • Abd-Alla MH, Shukry AO, Sokol K (2000) The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl Soil Ecol 14:191–200

    Article  Google Scholar 

  • Abdel-Aty AM, El-Dib MA (2016) Changes in the community structure and growth of fresh water microalgae as a consequence of diuron exposures. Int J Chem Tech Res 9:114–122

    CAS  Google Scholar 

  • Abdel-Mageed A, Areej AAS, Eman A, Sholkamy E (2013) In vitro detection of herbicide-tolerant fungi isolated from pesticide polluted soil. J Agric Sci and Technol A 3:960–972

    Google Scholar 

  • Abd-El-Malik Y (1971) Free-living nitrogen-fixing bacteria in Egyptian soils. In: Lie TA, Mulder G (eds) Biological nitrogen fixation in natural and agricultural habitats. Nijoff, The Hague, pp 442–459

    Google Scholar 

  • Abd El-Moniem E, Abd-Allah ASE (2008) Effect of green alga cells extract as foliar spray on vegetative growth, yield and berries quality of superior grapevine. Am Eurasian J Agric Environ Sci 4:427–433

    Google Scholar 

  • Adams MJ, Jacquier C (1994) Infection of cereals and grasses by isolates of Polymyxa graminis (Plasmodiophorales). Ann Appl Biol 125:53–60. https://doi.org/10.1111/j.1744-7348.1994.tb04946.x

    Article  Google Scholar 

  • Adeleye IA, Okorodudu E, Lawal O (2004) Effect of herbicides used in Nigeria on Rhizobium phaseoli, Azotobacter vinelandii and Bacillus subtilis. J Environ Biol 25:151–156

    CAS  PubMed  Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier Academic Press, Burlington, MA

    Google Scholar 

  • Aguirre-Cadena JF, Téllez SR, Cuautle M, Aguirre-Medina JF (2014) Survival of Azospirillum brasilense after applying herbicides on Triticum aestivum L. Var. Altiplano. Rev Mex Cienc Agríc 5:1549–1555

    Google Scholar 

  • Ahluwalia AS (1988) Influence of Saturn and knockweed on the growth and heterocyst formation in nitrogen-fixing blue-green alga. Pestic 22:43–44

    Google Scholar 

  • Ahmad I, Malloch D (1995) Interaction of soil microflora with the bioherbicide phosphinothricin. Agric Ecosyst Environ 54:165–174

    Article  CAS  Google Scholar 

  • Ahn IP (2008) Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice. Plant Physiol 146:213–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert M, Belastegui-Macadam X, Bleischwitz M, Kaldenhoff R (2008) Cuscuta spp.: parasitic plants in the spotlight of plant physiology, economy, and ecology. Prog Bot 69:267–277. https://doi.org/10.1007/978-3-540-72954-9-11

    Article  Google Scholar 

  • Albrecht M, Kortekamp A (2009) The in vitro effect of the herbicide Basta® (Glufosinate ammonium) on potential fungal grapevine pathogens. Eur J Hortic Sci 74:112–117

    CAS  Google Scholar 

  • Alcántara-de la Cruz R, Zanuncio JC, Lacerda MC, Wilcken CF, Fernandes FL, de Souza Tavares W, Soares MA, Sediyama CS (2017) Side-effects of pesticides on the generalist endoparasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae). Sci Rep 7:e10064. https://doi.org/10.1038/s41598-017-10462-3

    Article  Google Scholar 

  • Alexander HM, Holt RD (1998) The interaction between plant competition and disease. Perspect Plant Ecol Evol Syst 1:206–220. https://doi.org/10.1078/1433-8319-00059

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allievi L, Gigliotti C (2001) Response of the bacteria and fungi of two soils to the sulfonylurea herbicide cinosulfuron. J Environ Sci Health B 36:161–175. https://doi.org/10.1081/PFC-100103741

    Article  CAS  PubMed  Google Scholar 

  • Althaf HS, Srinivas P (2013) Evaluation of plant growth promoting traits by Pseudomonas and Azotobacter isolated from rhizotic soils of two selected agroforestry tree species of Godavari belt region, India. Asian J Exp Biol Sci 4:431–436

    Google Scholar 

  • Altieri M (1994) Biodiversity and pest management in agroecosystems. Haworth Press, New York

    Google Scholar 

  • Altman J (1972) Increased glucose exudate and damping-off in sugar beets in soils treated with herbicides. Phytopathol 62:743

    Article  Google Scholar 

  • Altman J (1991) Herbicide-pathogen interaction in plant disease. Pestic Outlook 2:17–21

    CAS  Google Scholar 

  • Altman J (1993) Pesticide interactions in crop production: beneficial and deleterious effects. CRC Press, Boca Raton

    Google Scholar 

  • Altman J, Campbell CL (1977a) Effect of herbicides on plant diseases. Annu Rev Phytopathol 15:361–385

    Article  CAS  Google Scholar 

  • Altman J, Campbell CL (1977b) Pesticide-plant disease interactions. Effects of cycloate on sugar beet damping-off induced by Rhizoctonia solani. Phytopathol 67:1163–1165

    Article  CAS  Google Scholar 

  • Altman J, Ross M (1967) Plant pathogens as a possible factor in unexpected preplant herbicide damage in sugarbeets. Plant Dis Rep 51:86–88

    CAS  Google Scholar 

  • Altman J, Rovira AD (1989) Herbicide-pathogen interactions in soil-born root diseases. Can J Plant Pathol 11:166–172

    Article  Google Scholar 

  • Amla DV, Kochhar VK (1982) Physiological and genetic effects on some common phenylalkylureas on nitrogen fixing cyanobacterium Nostoc muscorum. In: Proceedings of the national symposium on biological nitrogen fixation, IARI, New Delhi, p 606 (abstract)

    Google Scholar 

  • Ananthakrishnan TN (1971) Thrips in agriculture, horticulture and forestry-diagnosis, bionomics and control. Pak J Sci Ind Res 30:113–146

    Google Scholar 

  • Anderson A (2001) The effects of acetolactate synthase (ALS) inhibiting herbicides on the growth, yield, nodulation and nitrogen fixation of selected legumes, a thesis submitted for the degree of Doctor of Philosophy in the Faculty of Agricultural and Natural Resource Sciences at Adelaide University. Department of Agronomy and Farming Systems, Roseworthy Campus, Adelaide University, Sept 2001. http://digital.library.adelaide.edu.au/dspace/handle/2440/61244

  • Anderson JA, Kolmer JA (2005) Rust control in glyphosate tolerant wheat following the application of the herbicide glyphosate. Plant Dis 88:1136–1142

    Article  CAS  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Anderson A, Baldock JA, Rogers SL, Bellotti W, Gill G (2004) Influence of chlorsulfuron on rhizobial growth, nodule formation, and nitrogen fixation with chickpea. Aust J Agric Res 55:1059–1070

    Article  CAS  Google Scholar 

  • Andreev VP, Maslov YI (1988) Adaptation to diuron by the cyanobacterium Anabaena variabilis Fd. During long periods of cultivation. Vestn Leningr Univ Biol 0:71–75

    CAS  Google Scholar 

  • Araújo ASF, Monteiro RTR, Abakerli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804

    Article  PubMed  CAS  Google Scholar 

  • Arfarita N, Imai T, Kanno A, Higuchi T, Yamamoto K, Sekine M (2011) Screening of soil-born fungi from forest soil using glyphosate herbicide as the sole source of phosphorus. J Water Environ Technol 9:391–400

    Article  Google Scholar 

  • Aristilde L, Reed ML, Wilkes RA, Youngster T, Kukurugya MA, Katz V, Sasaki CRS (2017) Glyphosate-induced specific and widespread perturbations in the metabolome of soil Pseudomonas species. Front Environ Sci 5:34. https://doi.org/10.3389/fenvs.2017.00034

    Article  Google Scholar 

  • Awadalla OA, El-Refaie IM (1994) Effect of herbicides on the toxicity of fungicides against Rhizoctonia solani causing damping-off of cotton. J Phytopathol 140:187–192

    Article  CAS  Google Scholar 

  • Azcorn R, Barea JM (1975) Synthesis of auxins, gibberellins and cytokinins by Azotobacter vinelandii and Azotobacter beijerinckii related to effects produced on tomato plants. Plant Soil 43:609–619

    Article  Google Scholar 

  • Balajee S, Mahadevan A (1990) Influence of chloroaromatic substances on the biological activity of Azotobacter chroococcum. Chemosphere 21:51–56

    Article  CAS  Google Scholar 

  • Balandreau J (1986) Ecological factor and adaptive processes in N2-fixing bacteria populations of the plant environment. Plant Soil 90:73–93

    Article  Google Scholar 

  • Baltensperger AA, Schank SC, Smith RL, Littell RC, Bouton JH, Dudeck AE (1978) Effect of inoculation with Azospirillum and Azotobacter on tuff-type Bermuda genotypes. Crop Sci 18:1043–1045. https://doi.org/10.2135/cropsci1978.0011183X010800180035x

    Article  Google Scholar 

  • Bandeen JD, Buchholtz K (1967) Competitive effects of quackgrass upon corn as modified by fertilization. Weeds 15:220–227

    Article  CAS  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43. https://doi.org/10.1128/MMBR.00019-15

    Article  PubMed  Google Scholar 

  • Barnes JP, Putnam AR, Burke BA (1986) Allelopathic activity of rye (Secale cereale L.). In: Putnam AR, Tang CS (eds) The science of allelopathy. Wiley, New York, pp 271–286

    Google Scholar 

  • Barros ACB, Moura RM, Pedrosa E (2006) Studies on the effect of simultaneous application of herbicide and systemic nematode on nematicide efficacy in sugarcane fields. Fitopathol Bras 31:291–296

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Ream Y, Levanony H, Sade A (1989) Nonspecific responses in plant growth, yield, and root colonization of noncereal crop plants to inoculation with Azospirillum brasilense Cd. Can J Bot 67:1317–1324

    Article  Google Scholar 

  • Becquer A, Torres-Aquino M, Le Guernevé C, Amenc LK, Trives-Segura C, Staunton S, Quiquampoix H, Plassard C (2017) Establishing a symbiotic interface between cultured ectomycorrhizal fungi and plants to follow fungal phosphate metabolism. Bio-Protocol 7:2577. https://doi.org/10.21769/BioProtoc.2577

    Article  Google Scholar 

  • Bennett CW (1940) Acquisition and transmission of viruses by dodder (Cuscuta subinclusa). Phytopathol 30:2 (abstract)

    Google Scholar 

  • Bennett CW (1944) Latent virus of dodder and its effect on sugar beet plants. Phytopathol 34:77–91

    Google Scholar 

  • Bera S, Ghosh R (2013) Soil microflora and weed management as influenced by Atrazin 50% WP in sugarcane. Univers J Agric Res 1:41–47

    CAS  Google Scholar 

  • Bernards ML, Thelen KD, Muthukumaran RJ, McCracken JL (2005) Glyphosate interaction with manganese in tank mixtures and its effect on glyphosate absorption and translocation. Weed Sci 53:787–794

    Article  CAS  Google Scholar 

  • Berner DK, Berggren GT, Snow JP (1991) Effects of glyphosate on Calonectria crotalariae and red crown rot of soybean. Plant Dis 75:809–813

    Article  CAS  Google Scholar 

  • Bertholet J, Clark W (1985) Effect of trifluralin and metribuzin on faba bean growth, development and symbiotic nitrogen fixation. Can J Plant Sci 65:9–20

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Schreiner RP, Mihara KL, McDaniel H (1996) Mycorrhizae, biocides, and biocontrol. 2. Mycorrhizal fungi enhance weed control and crop growth in a soybean-cocklebur association treated with the herbicide bentazon. Appl Soil Ecol 3:205–214

    Article  Google Scholar 

  • Bhat MA, Tsuda M, Horiike K, Nozaki M, Vaidyanathan CS, Nakazawa T (1994) Identification and characterization of a new plasmid carrying genes for the degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSC90. Appl Environ Microbiol 60:307–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhoraniya MF, Khandar RR, Khunti JP (2002) Evaluation of pesticides against Sclerotium rolfsii on chilli by soil plate technique. Plant Dis Res 17:145–146

    Google Scholar 

  • Black BD, Russin JS, Griffin JL, Snow JP (1996) Herbicide effects on Rhizoctonia solani in vitro and rhizoctonia foliar blight of soybean (glycine max). Weed Sci 44:711–716

    CAS  Google Scholar 

  • Blackwell Publishing Ltd (2007) First all-African GM crop is resistant to maize streak virus. ScienceDaily. 16 Aug 2007. http://www.sciencedaily.com/releases/2007/08/070815105030.htm/

  • Blowes WM (1987) Effect of ryegrass root residues, knock-down herbicides, and fungicides on the emergence of barley in sandy soils. Aust J Exp Agric 27:785–790

    Article  CAS  Google Scholar 

  • Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16:93–108

    Article  Google Scholar 

  • Bosque-Perez NA (2000) Eight decades of maize streak virus research. Virus Res 71:107–121. https://doi.org/10.1016/S0168-1702(00)00192-1

    Article  CAS  PubMed  Google Scholar 

  • Bostian AL, Schmitt DP, Barker KR (1986) In vitro hatch and survival of Heterodera glycines as affected by alachlor and phenamiphos. J Nematol 18:22–26

    Google Scholar 

  • Bott S, Tesfamariam T, Candan H, Cakmak I, Römheld V, Neumann G (2008) Glyphosate-induced impairment of plant growth and micronutrient status in glyphosate-resistant soybean (Glycine max L.). Plant Soil 312:185–194

    Article  CAS  Google Scholar 

  • Boyette CD, Reddy KN, Hoagland RE (2006) Glyphosate and bioherbicide interaction for controlling kudzu (Pueraria lobata), redvine (Brunnichia ovata), and trumpet creeper (Campsis radicans). Biocontrol Sci Technol 16:1067–1077

    Article  Google Scholar 

  • Bramhall RA, Higgins VJ (1988) The effect of glyphosate on resistance of tomatoto fusarium crown and root rot disease and on the formation of host structural defensive barriers. Can J Bot 66:1547–1555

    Article  Google Scholar 

  • Brandes W, Heitefuss R (1971) Nebenwirkung von Herbiziden auf Erysiphe graminis und Cercosporella herpotrichoides an Weizen. II. Physiologische und biochemische Ursachen des veränderten Befalls der Pflanze. J Phytopathol 72:34–52

    Article  CAS  Google Scholar 

  • Breazeale FW, Camper ND (1972) Effect of selected herbicides on bacterial growth rates. Appl Microbiol 23:431–432. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC380360

  • Bretschneider T, Fischer R, Nauen R (2007) Inhibitors of lipid synthesis (acetyl-CoA-carboxylase inhibitors). In: Krämer W, Schrmer U (eds) Modern crop protection compounds, vol 3. Willey-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 909–926

    Google Scholar 

  • Bromilow RH, Chamberlain K, Tench AJ, Williams RH (1993) Phloem translocation of strong acids—glyphosate, substituted phosphonic, and sulfonic acids—in Ricinus communis L. Pestic Sci 37:39–47

    Article  CAS  Google Scholar 

  • Brunt A, Crabtree K, Dallwitz M, Gibbs A, Watson L (1996) Viruses of plants: descriptions and lists from the VIDE database. CAB International, UK

    Google Scholar 

  • Buechel T, Bloodnick E (2016) Mycorrhizae: description of types, benefits and uses. Plant Health. http://www.gpnmag.com/article/mycorrhizae-description-of-types-benefits-anduses/

  • Bulegon LG, Inagaki AM, Moratelli G, da Costa NV, Guimarães VF (2017) Fitotoxidez de mesotriona em milho inoculado com Azospirillum brasilense associado a adubação nitrogenada. Braz J Agric Sci 12:325–331. https://doi.org/10.5039/agrarian.v12i3a5459

    Article  Google Scholar 

  • Burdon JJ, Chilvers GA (1982) Host density as a factor in plant disease ecology. Annu Rev Phytopathol 20:143–166

    Article  Google Scholar 

  • Burnet M, Hodgson B (1991) Differential effects of sulfonylurea herbicides chlorsulfuron and sulfometuron methyl on microorganisms. Arch Microbiol 155:521–525. https://doi.org/10.1007/BF00245344

    Article  CAS  Google Scholar 

  • Burns ER, Buchanan GA, Carter M (1971) Inhibition of carotenoid synthesis as a mechanism of action of amitrole, dichlormate, and pyriclor. Plant Physiol 47:144–148. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC365828/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busse MD, Fiddler GO, Ratcliff AW (2004) Ectomycorrhizal Formation in Herbicide-Treated Soils of Differing Clay and Organic Matter Content. Water Air Soil Poll 152(1–4):23–34

    Article  CAS  Google Scholar 

  • Cameron DD (2010) Arbuscular mycorrhizal fungi as (agro)ecosystem engineers. Plant Soil 333:1–5

    Article  CAS  Google Scholar 

  • Campos DTS, da Silva MCS, da Luz JMR, Telesfora RJ, Kasuya MCM (2011) Colonização micorrízica em plantios de eucalipto. Rev Árvore 35:965–974

    Article  CAS  Google Scholar 

  • Canaday CH, Helsel DG, Wyllie TD (1986) Effects of herbicide-induced stress on root colonization of soybeans by Macrophomina phaseolina. Plant Dis 70:863–866

    Article  CAS  Google Scholar 

  • Cárdenas DM, Garrido MF, Bonilla RR, Baldani VL (2010) Aislamiento e identificación de cepas de Azospirillum sp. En pasto guinea (Panicum maximum Jacq.) del Valle del Cesar. Pastos Forrajes 33:285–300

    Google Scholar 

  • Carmo EL, Bueno AF, Bueno RCOF, Vieira SS, Gobbi AL, Vasco FR (2009) Seletividade de diferentes agrotóxicos usados na cultura da soja ao parasitoide de ovos Telenomus remus. Cienc Rural 39:2293–2300

    Article  Google Scholar 

  • Carson ML, Arnold WE, Todt PE (1991) Predisposition of soybean seedlings to fusarium roo rot with trifluralin. Plant Dis 75:342–347

    Article  CAS  Google Scholar 

  • Casale WL, Hart LP (1986) Influence of four herbicides on carpogenic germination and apothecium development of Sclerotinia sclerotiorum. Phytopathol 76:980–984

    Article  CAS  Google Scholar 

  • Castilla AM, Dauwe T, Mora I, Malone J, Guitart R (2010) Nitrates and herbicides cause higher mortality than the traditional organic fertilizers on the grain beetle, Tenebrio molitor. Bull Environ Contam Toxicol 84:101–105. https://doi.org/10.1007/s00128-009-9883-5

    Article  CAS  PubMed  Google Scholar 

  • Caulder JD, Gotlieb AR, Stowell AR, Towell L, Watson AK (1987) Herbicidal compositions comprising microbial herbicides and chemical herbicides or plant growth regulators. Eur Pat Appl. http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/4808207

  • Cave RD (2000) Biology, ecology and use in pest management of Telenomus remus. Biocontrol 21:21–26

    Google Scholar 

  • Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops: a review. J Environ Qual 35:1633–1658

    Article  CAS  PubMed  Google Scholar 

  • Chan Cupul W, Heredia Abarca G, Rodríguez Vázquez R, Salmones D, Gaitán Hernández R, Alarcón Gutiérrez E (2014) Response of lignolytic macrofungi to the herbicide atrazine: dose-response bioassays. Rev Argent Microbiol 46:348–357

    Google Scholar 

  • Chandler JM, Santelman PW (1968) Interactions of four herbicides with Rhizoctonia solani on seedling cotton. Weed Sci 16:453–456

    CAS  Google Scholar 

  • Chattopadhyay SB, Chakrabarti NK (1953) Occurrence in nature of an alternative host (Leersia hexandra Sw.) of Helminthosporium oryzae Breda de Haan. Nature 172:550

    Article  Google Scholar 

  • Chen X, Han H, Jiang P, Nie L, Fan P, Lv S, Feng J, Li Y (2011) Transformation of β-lycopene cyclase genes from Salicornia europaea and arabidopsis conferred salt tolerance in arabidopsis and tobacco. Plant Cell Phyiol 52:909–921. https://doi.org/10.1093/pcp/pcr043

    Article  CAS  Google Scholar 

  • Cheng MW (2005) Manganese transition states during infection and early pathogenesis in rice blast. M.S. thesis. Purdue University, West Lafayette, IN

    Google Scholar 

  • Chennappa G, Adkar-Purushothama CR, Naik MK, Sreenivasa MY (2014) Impact of pesticide on PGPR activity of Azotobacter sp. isolated from pesticide flooded paddy soils. Greener J Agric Sci 4:117–129. https://doi.org/10.15580/GJAS.2014.4.010314003

    Article  Google Scholar 

  • Chittenden FH (1919) Control of onion thrips. USDA Farm Bull 1007:16

    Google Scholar 

  • Cohen R, Riov J, Lisker N, Katan J (1986) Involvement of ethylene in herbicide-induced resistance to Fusarium oxysporum f. sp. melonis. Phytopathol 76:1281–1285

    Article  CAS  Google Scholar 

  • Cohen R, Blair B, Katan J (1992a) Chloroacetamide herbicides reduce incidence of Fusarium wilt in melons. Crop Prot 11:181–185

    Article  CAS  Google Scholar 

  • Cohen R, Cuppels DA, Brammall RA, Lazarovits G (1992b) Induction of resistance towards bacterial pathogens of tomato by exposure of the host to dinitroaniline herbicides. Phytopathol 82:110–114

    Article  CAS  Google Scholar 

  • Cohen R, Blaier B, Schaffer AA, Katan J (1996) Effect of acetochlor treatment on fusarium wilt and sugar content in melon seedlings. Eur J Plant Pathol 102:45–50

    Article  CAS  Google Scholar 

  • Cole H, MacKenzie DR, Ercegovich CD (1968) Maize dwarf mosaic-interactions between virus-host-soil pesticides for certain inoculated hybrids in Pennsylvania field plantings, SEries 1. Main effects of virus and chemicals on yield. Plant Dis Rep 52:545–549

    Google Scholar 

  • Cole H, MacKenzie DR, Boyle JS, Ercegovich CD (1969a) Maize dwarf mosaic-effects of virus strains A and B on yield and interaction effects of atrazine and the virus on yield. Plant Dis Rep 53:340–344

    Google Scholar 

  • Cole H, MacKenzie DR, Smith CB, Ercegovich CD (1969b) Influence of maize dwarf mosaic virus and trace levels of atrazine on weight and foliar element accumulation by two single cross maize hybrids in the greenhouse. Plant Dis Rep 53:652–655

    Google Scholar 

  • Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R (2003) Agrobacterium tumefaciens mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Lett 220:141–148. https://doi.org/10.1016/S0378-1097(03)00089-2

    Article  CAS  PubMed  Google Scholar 

  • Combier JP, Melayah D, Raffier C, Pépin R, Marmeisse R, Gay G (2004) Non mycorrhizal (Myc) mutants of Hebeloma cylindrosporum obtained through insertional mutagenesis. Mol Plant Microbe Interact 17:1029–1038. https://doi.org/10.1094/MPMI.2004.17.9.1029

    Article  CAS  PubMed  Google Scholar 

  • Craciun MA, Borozan AB, Bordean DM, Verdes D, Popescu R (2013) The influence of herbicides on fungus communities from soil. Ann Rom Soc Cell Biol 18:164–169

    Google Scholar 

  • Crowley DE, Rengel Z (1999) Biology and chemistry of nutrient availability in the rhizosphere. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. Food Products Press, London, pp 1–40

    Google Scholar 

  • Cruz I, Figueiredo MLC, Oliveira CE, Vasconcelos CA (1999) Damage of Spodoptera frugiperda (Smith) in different maize genotypes cultivated in soil under three levels of aluminium saturation. Int J Pest Manag 45:293–296

    Article  Google Scholar 

  • Culdlin P, Mejstrik V, Skoupy J (1983) Effects of pesticides on ectomycorrhizae of Pinus sylvestris seedlings. Plant Soil 17:353–361

    Article  Google Scholar 

  • Dallwitz MJ (1980) A general system for coding taxonomic descriptions. Taxon 29:41–46

    Article  Google Scholar 

  • Dallwitz MJ, Paine TA, Zurcher EJ (1993) User’s guide to the DELTA system: a general system for processing taxonomic descriptions, 14th edn. CSIRO Division of Entomology, Canberra

    Google Scholar 

  • Dann EK, Diers BW, Hammerschmidt R (1999) Suppression of sclerotinia stem rot of soybean by lactofen herbicide treatment. Phytopathol 89:598–602

    Article  CAS  Google Scholar 

  • Dart PJ (1986) Nitrogen fixation associated with non-legumes in agriculture. Plant Soil 90:303–334

    Article  CAS  Google Scholar 

  • Das AC, Nayek H, Chakravarty A (2012) Environ Monit Assess 184:7453. https://doi.org/10.1007/s10661-011-2512-x

    Article  CAS  PubMed  Google Scholar 

  • DaSilva EJ, Henriksson LE, Henriksson E (1975) Effect of pesticides on blue-green algae and nitrogen-fixation. Arch Environ Contam Toxicol 3:193–204

    Article  CAS  PubMed  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • Daugrois JH, Hoy JW, Griffin JL (2005) Protoporphyrinogen oxidase inhibitor effects on pythium root rot of sugarcane, Pythium species, and the soil microbial community. Phytopathol 95:220–226

    Article  CAS  Google Scholar 

  • Dawson JH, Musselman LJ, Wolswinkel P, Dörr I (1994) Biology and control of Cuscuta, Musselman. Rev Weed Sci 6:265–317

    Google Scholar 

  • Debaud JC, Gay G (1987) In vitro fruiting under controlled conditions of the ectomycorrhizal fungus Hebeloma cylindrosporum associated with Pinus pinaster. New Phytol 105:429–435. https://doi.org/10.1111/j.1469-8137.1987.tb00880.x

    Article  PubMed  Google Scholar 

  • Debona AC (1967) Studies on the effects ofsome herbicides on soil nitrification, Ph.D. thesis. University of London

    Google Scholar 

  • Debona AC, Audus LJ (1970) Studies on the effects of herbicides on soil nitrification. Weed Res 10(3):250–263

    Article  CAS  Google Scholar 

  • Dejonghe W, Goris J, Fantroussi S, Hofte M, de Vos P, Verstraete W, Top EM (2000) Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Gallo M, Fabbri P (1990) Inoculation of Azospirillum brasilense Cd on chickpea (Cicer arietinum). Symbiosis 9:283–287

    Google Scholar 

  • Del Sorbo G, Schoonbeek HJ, De Waard M (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30:1–15

    Article  PubMed  Google Scholar 

  • Desjardins PR, Drake RJ, French JV (1969) Transmission of citrus ringspot virus to citrus and non-citrus hosts by dodder (Campestris subinclusa). Plant Dis Rep 53:947–948

    Google Scholar 

  • Diaz-Montano J, Fuchs M, Nault BA, Fail J, Shelton AM (2011) Onion thrips (Thysanoptera: Thripidae): a global pest of increasing concern in onion. J Econ Entomol 104:1–13. https://doi.org/10.1603/EC10269

    Article  PubMed  Google Scholar 

  • Díaz-Zorita M, Fernández-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11

    Article  Google Scholar 

  • Dissanayake N, Hoy JW, Griffin JL (1998) Herbicide effects on sugarcane growth, pythium root rot, and Pythium arrhenomanes. Phytopathol 88:530–535

    Article  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2002) The phenylpropanoidpathway and plant defense—a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in nonleguminous crop plants. Sciencia Tech Publishers, Madison

    Google Scholar 

  • Dobson AP (2004) Population dynamics of pathogens with multiple host species. Am Nat 164:S64–S78

    Article  PubMed  Google Scholar 

  • Dodge AD (1975) Some mechanisms of herbicide action. Sci Prog 62:447–466

    CAS  Google Scholar 

  • Doederlein TA, Sites RW (1993) Host plant preferences of Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) for onion and associated weeds on the southern high plains. J Econ Entomol 86:1706–1713. https://doi.org/10.1093/jee/86.6.1706

    Article  Google Scholar 

  • Donnelly PK, Fletcher JS (1994) Potential use of mycorrhizal fungi as bioremediation agents. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology, ACS symposium series. American Chemistry Society, Washington DC, pp 93–99 (Chapter 8). http://dx.doi.org/10.1021/bk-1994–0563.ch008

    Chapter  Google Scholar 

  • Donnelly PK, Entry JA, Crawford DL (1993) Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol 59:2642–2647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doumbou CL, Hamby Salove MK, Crawford DL, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102. https://doi.org/10.7202/706219ar

    Article  Google Scholar 

  • Drescher N, Otto S (1973) Ober den Abbau von Bentazon im Boden. Mitt Biol Bundes Anst Land Forstwirtsch 151:181

    Google Scholar 

  • Drew EA, Gupta VVSR, Roget DK (2007) Herbicide use, productivity, and nitrogen fixation in field pea (Pisum sativum). Aust J Agric Res 58:1204–1214. https://doi.org/10.1071/ar06394

    Article  CAS  Google Scholar 

  • Druille M, Cabello MN, Omacini M, Golluscio RA (2013) Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Appl Soil Ecol 64:99–103

    Article  Google Scholar 

  • Duke SO, Cerdeira L (2005) Potential environmental impacts of herbicide-resistant crops. Collect Biosaf Rev 2:66–143

    Google Scholar 

  • Duke SO, Cedergreen N, Velini ED, Belz RG (2006) Hormesis: is it an important factor in herbicide use and allelopathy. Outlook Pest Manag 17:29–33

    Google Scholar 

  • Duke SO, Wedge DE, Cerdeira AL, Matallo MB (2007) Herbicide effects on plant disease. Outlooks Pest Manag 36–40, http://dx.doi.org/10.1564/18feb13

    Article  CAS  Google Scholar 

  • Duncan DR, Paxton JD (1981) Trifluralin enhancement of phytophthora root rot of soybean. Plant Dis 65:435–436

    Article  CAS  Google Scholar 

  • Durgesha M (1994) Effect of dinitroaniline herbicides on rhizobia, nodulation and N2(C2H2) fixation of four groundnut cultivars. Ann Appl Biol 124:75–82. https://doi.org/10.1111/j.1744-7348.1994.tb04117.x

    Article  CAS  Google Scholar 

  • Eberbach PL, Douglas LA (1989) Herbicide effects on the growth and nodulation potential of Rhizobium trifolii with Trifolium subterraneum L. Plant Soil 119:15–23. https://doi.org/10.1007/BF00010421

    Article  CAS  Google Scholar 

  • Ehlert KA, Mangold JM, Engel RE (2014) Integrating the herbicide imazapic and the fungal pathogen Pyrenophora semeniperda to control Bromus tectorum. Weed Res 54:418–424. https://doi.org/10.1111/wre.12089

    Article  CAS  Google Scholar 

  • Eker S, Ozturk L, Yazici A, Erenoglu B, Romheld V, Cakmak I (2006) Foliar applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J Agric Food Chem 54:10019–10025

    Article  CAS  PubMed  Google Scholar 

  • El-Ghamry AM, Huang CY, Xu JM (2000) Influence of chlorsulfuron herbicide on size of microbial biomass in soil. J Environ Sci 12:138–142

    CAS  Google Scholar 

  • El-Khadem M, Papavizas GC (1984) Effect of the herbicides EPTC and linuron on cotton diseases caused by Rhizoctonia solani and Fusarium oxysporum f. sp. vasinfectum. Plant Pathol 33:411–416

    Article  CAS  Google Scholar 

  • El-Khadem M, Zahran M, El-Kazzaz MK (1979) Effect of the herbicides trifluralin, dinitamine and fluometuron on Rhizoctonia disease in cotton. Plant Soil 51:463–470

    Article  CAS  Google Scholar 

  • El-Khadem M, El-Kazzaz MK, Hassan MA (1984) Influence of different pre-emergence herbicides on cotton diseases caused by Rhizoctonia solani and Fusarium oxysporum f. sp. vasinfectum. Plant Soil 79:29–36

    Article  CAS  Google Scholar 

  • El-Shanshoury A, El-Raheem R, Abu El-Sououd SM, Awadalla OA, El-Bandy NB (1995) Formation of tomatine in tomato plants infected with Streptomyces species and treated with herbicides, correlated with reduction of Pseudomonas solanacearum and Fusarium oxysporum f. sp. lycopersici. Acta Microbiol Pol 44:255–266

    CAS  PubMed  Google Scholar 

  • Elstner EF, Stoffer C, Heupel A (1975) Determination of superoxide free radical ion and hydrogen peroxide as products of photosynthetic oxygen reduction. Z Naturforsch 30:53–56

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen & Co., London

    Book  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worlwide. American Phytopathological Society, St Paul

    Google Scholar 

  • Eshel Y, Katan J (1972) Effect of time of application of diphenamid on pepper weeds and disease. Weed Sci 20:468–471

    Google Scholar 

  • Estok D, Freedman B, Boyle D (1989) Effects of the herbicides 2,4-D, glyphosate, hexazinone, and triclopyr on the growth of three species of ectomycorrhizal fungi. Bull Environ Contam Toxicol 42:835–839

    Article  CAS  PubMed  Google Scholar 

  • Fajemisin JM (2003) Overview of maize viruses in sub-Saharan Africa. In: Hughes JH, Odu J (eds) Plant virology in sub-Saharan Africa. International Institute of Tropical Agriculture Conference, IIesa, Nigeria, pp 158–171

    Google Scholar 

  • Farajzadeh EM, Yarnia M, Rezaei F (2006) Evaluation of allelopathical effects of Chenopodium album, Amaranthus retroflexus, and Cynodon dactylon on germination and seedling growth of soybean. In: Nezamabadi N (ed) Proceedings of the 17th Iranian plant protection congress, volume III, weeds. 2–5 Sept 2006, campus of agriculture and natural resources, University of Tehran, Karaj, p 16

    Google Scholar 

  • Fawole OB (2000) Effect of pre-emergence herbicide, Galex on fungal and bacterial flora of a cowpea cropped soil. J Biosci Res Commun 2:195–200

    Google Scholar 

  • Fayez M, Emam NF, Makboul HE (1983) Interaction of the herbicides bromoxynil and afalon S with Azospirillum and growth of maize. J Plant Nutr Soil Sci 146:741–751

    CAS  Google Scholar 

  • Feng PCC, Baley J, Clinton WP, Bunkers GJ, Alibhai MF, Paulitz TC, Kidwell KK (2005) Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean. Proc Natl Acad Sci U S A 102:17290–17295. https://doi.org/10.1073/pnas.0508873102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng PCC, Clark C, Andrade GC, Balbi MC, Caldwell P (2007) The control of Asian rust by glyphosate in glyphosate-resistant soybeans. Pest Manag Sci 63:15–26

    Google Scholar 

  • Feng PCC, Clark C, Andrade GC, Balbi MC, Caldwell P (2008) The control of Asian rust by glyphosate in glyphosate-resistant soybeans. Pest Manag Sci 64:353–359. https://doi.org/10.1002/ps.1498

    Article  CAS  PubMed  Google Scholar 

  • Fernandes MCS, Costa LSD, Grazziotti PH, Grazziotti DCFS, Santos JBD, Rossi MJ (2014) Pisolithus sp. tolerance to glyphosate and isoxaflutole in vitro. Rev Árvore 38:461–468

    Article  Google Scholar 

  • Fernandez MR, Selles F, Gehl D, DePauw RM, Zentner RP (2005) Crop production factors associated with fusarium head blight in spring wheat in eastern Saskatchewan. Crop Sci 45:1908–1916

    Article  Google Scholar 

  • Fernandez MR, Zentner RP, DePauw RM, Gehl DT, Stevenson FC (2007) Impacts of crop production factors on fusarium head blight in barley in eastern Saskatchewan. Crop Sci 47:1574–1584

    Article  Google Scholar 

  • Fischer NH (1986) The function of mono and sesquiterpenes as plant germination and growth regulators. In: Putnam AR, Tang CS (eds) The science of allelopathy. Wiley, New York, pp 203–218

    Google Scholar 

  • Fletcher WH (1960) The effect of herbicides on soil micro-organisms. In: Woodford EK, Sagar GR (eds) Herbicides and the Soil, Blackwell Scientific Publications, Oxford, England, p 20–62

    Google Scholar 

  • Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The Blue-Green Algae. Academic Press, London

    Google Scholar 

  • Forlani G, Mantelli M, Branzoni M, Nielson E, Favilli F (1995) Differential sensitivity of plant-associated bacteria to sulfonylurea and imidazolinone herbicides. Plant Soil 176:243–253

    Article  CAS  Google Scholar 

  • Forouzesh A, Zand E, Soufizadeh S, Samadi Foroushani S (2015) Classification of herbicides according to chemical family for weed resistance management strategies—an update. Weed Res 55:334–358. https://doi.org/10.1111/wre.12153

    Article  CAS  Google Scholar 

  • Forrester IT, Grabski AC, Burgess RR, Leatham GF (1988) Manganese, Mn-dependent peroxidases, and the biodegradation of lignin. Biochem Biophys Res Commun 157:992–999

    Article  CAS  PubMed  Google Scholar 

  • Frantzen J, Rossi F, Müller-Schärer H (2005) Integration of biological control of common groundsel (Senecio vulgaris) and chemical control. Weed Technol 787–793

    Article  CAS  Google Scholar 

  • Gadkari D, Klingmuller W (1988) Influence of herbicides on growth and nitrogenase activity of Azospirillum. In: Klingmüller W (ed) Azospirillum IV. Genetics, physiology, ecology. Proceedings of the fourth Bayreuth Azospirillum workshop. Springer, Berlin, pp 150–158

    Chapter  Google Scholar 

  • Galindo FS, Teixeira Filho MCM, Buzetti S, Santini JMK, Alves CJ, Nogueira LM, Ludkiewicz MGZ, Andreotti M, Bellotte JLM (2016) Corn yield and foliar diagnosis affected by nitrogen fertilization and inoculation with Azospirillum brasilense. Rev Bras Ciênc Solo 40:e0150364. https://doi.org/10.1590/18069657rbcs20150365

    Article  Google Scholar 

  • Galindo FS, Teixeira Filho MCM, Buzetti S, Santini JMK, Ludkiewicz MGZ, Baggio G (2017) Modes of application of cobalt, molybdenum and Azospirillum brasilense on soybean yield and profitability. Rev Bras Eng Agríc Amb 21:180–185. https://doi.org/10.1590/1807-1929/agriambi.v21n3p180-185

    Article  Google Scholar 

  • Gal-On A, Naglis A, Liebman D, Ziadna H, Kathrivan K, Papayiannis L, Holdengreber V, Guenoune-Gelbert D, Lapidot M, Aly R (2009) Broomrape can acquire viruses from its host. Phytopathol 99:1321–1329. https://doi.org/10.1094/PHYTO-99-11-1321

    Article  CAS  Google Scholar 

  • Gamliel A (2008) High consequence plant pathogens. In: Gullino, ML (ed) Crop Biosecurity, Springer Science+Business Media BV

    Google Scholar 

  • Garcia MA, Costea M, Kuzmina M, Stefanovic S (2014) Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. Am J Bot 101:670–690. https://doi.org/10.3732/ajb.1300449

    Article  PubMed  Google Scholar 

  • Gaweł S, Wardas M, Niedworok E, Wardas P (2004) Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 57:453–455

    PubMed  Google Scholar 

  • Gaynor JD, Hamill AS (1983) Bentazon preemergence activity on velvetleaf (Abutilon theophrasti Medic) and persistence in southwestern Ontario soils. Can J Plant Sci 63(4):1015–1022

    Article  CAS  Google Scholar 

  • Geisler L, Graef G, Wilson J, Schimelfenig J (2002) Interaction of glyphosate tolerancewith soybean cyst nematode resistance. Phytopathol 92:S529

    Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3:1–26. https://doi.org/10.1080/10889869991219163

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems. Ann Rev Phytopathol 40:13–43

    Article  CAS  Google Scholar 

  • Gilbert L, Norman R, Laurenson KM, Reid HW, Hudson PJ (2001) Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. J Anim Ecol 70:1053–1061

    Article  Google Scholar 

  • Giovannetti M, Turrini A, Strani P, Sbrana C, Avio L, Pietrangeli B (2006) Mycorrhizal fungi in ecotoxicological studies: soil impact of fungicides, insecticides and herbicides. Prev Today 2:47–62

    Google Scholar 

  • Gloria ON (2010) Studies on biodegradation of glyphosate herbicide by bacterial species isolated from rice fields. A dissertation submitted to the Department of Microbiology in the Faculty of Biological Sciences in Partial Fulfillment of the Requirement for the Award of a Master’s degree (M.Sc.) in Environmental Microbiology, University of Nigeria, Nsukka, Sept 2010

    Google Scholar 

  • Gonzalez A, Gonzalez-Murua C, Royuela M (1996) Influence of imazethapyr on Rhizobium growth and its symbiosis with pea (Pisum sativum). Weed Sci 44:31–37

    CAS  Google Scholar 

  • Goring CAR, Griffith JD, Q’Helia L, Scott HB, Youngson CR (1967) The effect of Tarden on microorganisms and soil biological processes. Down to Earth 22:14–17

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Govedarica MM, Milošević N, Jarak M, Konstantinović B (2001) Uticaj dimetenamida I metalachlora na mikrobiološka svojstva zemljišta pod šećernom repom. V Jug Sav Zašt Bil 12:3–8

    Google Scholar 

  • Grazziotti PH, Siqueira JO, Moreira FMS (2003) Espécies arbóreas e ectomicorrizas em relação ao excesso de metais pesados. In: Cerreta CA, Silva LS, Reichert JM (eds) Tópicos em ciência do solo. Braz Soil Sci Soc, 55–105

    Google Scholar 

  • Greaves MP, Malkomes MP (1980) Effects on soil microflora. In: Hance RJ (ed) Interactions between herbicides and the soil. Academic Press, New York, pp 223–253

    Google Scholar 

  • Grinstein A, Katan J, Eshel Y (1976) Effect of dinitroaniline herbicides on plant resistance to soil-borne pathogens. Phytopathol 66:517–522

    Article  CAS  Google Scholar 

  • Grinstein A, Lisker N, Katan J, Eshel Y (1984) Herbicide-induced resistance to wilt diseases. Physiol Plant Pathol 24:347–356

    Article  CAS  Google Scholar 

  • Gronwald JW (1991) Lipid biosynthesis inhibitors. Weed Sci 39:435–449

    CAS  Google Scholar 

  • Grossbard E, Atkinson D (1985) The herbicide glyphosate. Butterworths, London

    Google Scholar 

  • Grzesik M, Romanowska-Duda Z (2014) Improvements in germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Pol J Environ Stud 23:1147–1153

    Google Scholar 

  • Grzesik M, Romanowska-Duda Z (2015) Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol J Environ Stud 24:1003–1012

    Article  Google Scholar 

  • Grzesik M, Romanowska-Duda Z, Kalaji HM (2017) Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica 55:510–521. https://doi.org/10.1007/s11099-017-0716-1

    Article  CAS  Google Scholar 

  • Gupta G, Bhattacharya AK (2008) Assessing toxicity of post-emergence herbicides on the Spilarctia obliqua Walker (Lepidoptera: Arctiidae). J Pest Sci 81:9–15

    Article  Google Scholar 

  • Gveroska B (1999) Trichoderma harzianum in tobacco seedlings with the use of a herbicide. Int J Agric Innov Res 3:950–955

    Google Scholar 

  • Haahtela K, Kilpi S, Kari K (1988) Effects of phenoxy acid herbicides and glyphosate on nitrogenase activity (acetylene reduction) in root-associated Azospirillum, Enterobacter, and Klebsiella. FEMS Microbiol Ecol 53:123–127

    Article  CAS  Google Scholar 

  • Hale MG, Hulcher FH, Chappell WE (1957) The Effects of Several Herbicides on Nitrification in a Field Soil under Laboratory Conditions. Weeds 5(4):331–341

    Article  CAS  Google Scholar 

  • Hamel C, Morin F, Fortin A, Graner RL, Smith DL (1994) Mycorrhizal colonization increases herbicide toxicity in apple. Hort Sci 119:1255–1260

    CAS  Google Scholar 

  • Hammond-Kosack K, Jones JDG (2000) Responses to plant pathogens. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. ASPP, Rockville, MD, pp 1102–1156

    Google Scholar 

  • Harlapur SI, Kulkarni S, Nargund VB, Hedge RK (1989) Bioassay of herbicides and their efficacy on saprophytic survival of Sclerotium rolfsii Sacc.—a causal agent of food rot of wheat. Karnataka J Agric Sci 2:47–50

    Google Scholar 

  • Harper M (2007) The review of the moratorium on GM canola, Australia. http://www.dpi.vic.gov.au/dpi/nrenfa.nsf/LinkView/5477226A88881F86CA-2572E300074EEF89E6C67B4668BD2A7CA256FB70001BAB8

  • Hartman GE, Sinclair JB, Clark JR (1999) Compendium of soybean diseases, 4th edn. American Phytopathological Society, St Paul

    Google Scholar 

  • He Y, Shen D, Fang C, He R, Zhu Y (2006) Effects of Metsulfuron-Methyl on the Microbial Population and Enzyme Activities in Wheat Rhizosphere Soil. J Environ Sci Heal B 41(3):269–284

    Article  CAS  Google Scholar 

  • Heitefuss R (1970) Nebenwirkungen von Herbiziden auf Pflanzenkrankheiten und deren Ereger. Z Pflanzenkr Pflanzenpathol Pflanzenschutz Sondernheft V:117–127

    Google Scholar 

  • Heitefuss R (1972) Ursachen der Nebenwirkungen von Herbiziden auf Pflanzenkrankheiten. Z Pflanzenkr Pflanzenpathol Pflanzenschutz Sondernheft V:79–87

    Google Scholar 

  • Heitefuss R, Bodendörfer H (1968) Der Einfluss von Herbiziden und Kalstickstoff auf der durch Cercosporella herpotrichoides Fron. verursachten Halmbruch des Weizens. Z Pflanzenkr Pflanzenpathol Pflanzenschutz 75:641–659

    Google Scholar 

  • Helmeczi B, Kátai J, Bessenyei M (1988) Effect of herbicides on growth of some microscopic soil fungus species. Acta Microbiol Hung 35:429–432

    CAS  PubMed  Google Scholar 

  • Heydari A, Misaghi IJ (1998) The impact of herbicides on the incidence and development of Rhizoctonia solani-induced cotton seedling damping-off. Plant Dis 82:110–113

    Article  CAS  PubMed  Google Scholar 

  • Hickman MV, Dodds DM, Huber DM (2002) Micronutrient interactions reduce glyphosate efficacy on tall fescue. Proc Weed Sci Soc Am 42:18

    Google Scholar 

  • Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment. International Nature Farming Research Center, Atami. http://www.emro-asia.com/data/66.pdf

  • Hoagland RE (1996) Chemical interactions with bioherbicides to improve efficacy. Weed Technol 10:651–674

    Article  CAS  Google Scholar 

  • Hofman T, Lees H (1953) The biochemistry of the nitrifying organisms. 4. The respiration and intermediary metabolism of Nitrosomonas. Biochem J 54(4):579–583

    Article  CAS  PubMed Central  Google Scholar 

  • Holliday MJ, Keen NT (1982) The role of phytoalexins in the resistance of soybean leaves to bacteria: effect of glyphosate on glyceollin accumulation. Phytopathol 72:1470–1474

    Article  CAS  Google Scholar 

  • Holt RD, Lawton JH (1994) The ecological consequencesof shared natural enemies. Annu Rev Ecol Syst 25:495–520

    Article  Google Scholar 

  • Holt RD, Pickering J (1985) Infectious disease and species coexistence: a model of Lotka-Volterra form. Am Nat 126:196–211

    Article  Google Scholar 

  • Hornby D, Bateman GL, Gutteridge RJ, Lucas P, Osbourn AE, Ward E, Yarham DJ (1998) Take-all disease of cereals: a regional Pperspective. CAB International, Wallingford

    Google Scholar 

  • Hsia YT, Christensen JJ (1951) Effect of 2,4-D on seedling blight of wheat caused by Helminthosporium sativum. Phytopathol 41:1011–1020

    CAS  Google Scholar 

  • Hua Z, Huang BL, Ni GH, Wu JC, Yuan SZ (2002) Influence of some herbicides on Rhizoctonia solani. J Yangzhou Univ, Agric Life Sci Ed 23:71–73

    Google Scholar 

  • Huber DM, McCay-Buis TS (1993) A multiple component analysis of the take-all disease of cereals. Plant Dis 77:437–447

    Article  Google Scholar 

  • Huber DM, Seely CL, Watson RL (1966) Effects of the herbicide diuron on foot rot of winter wheat. Plant Dis Rep 50:852–854

    CAS  Google Scholar 

  • Huber DM, Cheng MW, Winsor BA (2005) Association of severe corynespora root rot of soybean with glyphosate-killed giant ragweed. Phytopathol 95:S45

    Google Scholar 

  • Huber DM, Leuck JD, Smith WC, Christmas EP (2004) Induced manganese deficiency in GM soybeans. In: Northcentral Fert. Extension Conf., Des Moines, IA, November 2004

    Google Scholar 

  • Hudson P, Greenman J (1998) Competition mediated by parasites: biological and theoretical progress. Trends Ecol Evol 13:387–390

    Article  CAS  PubMed  Google Scholar 

  • Hull R (2014) Plant virology, 5th edn. Elsevier Academic Press, Tokyo

    Google Scholar 

  • Hussain AL, Raverkar KP, Pareek N (2014) In vitro effects of herbicides on soil microbial communities. Bioscan 9:11–16

    Google Scholar 

  • Iloba C (1978) The influence of 2,4-D on ectomycorrhizal symbiosis in pine and spruce seedlings. Eur J Forest Pathol 8:379–383

    Article  CAS  Google Scholar 

  • Islam MS, Saha AK, Mosaddeque HQM, Amin MR, Islam MM (2008) In vitro studies on the reaction of fungi Trichoderma to defferent herbicides used in tea plantation. Int J Sustain Crop Prod 3:27–30

    Google Scholar 

  • Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QM, Hossain MZ, Ahmed B, Rahim S, Rahman MS, Alam MM, Hou S, Wan X, Saito JA, Alam M (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genom 13:493. https://doi.org/10.1186/1471-2164-13-493

    Article  CAS  Google Scholar 

  • Jachetta JJ, Appleby AP, Boersma L (1986) Apoplastic and symplastic pathways of atrazine and glyphosate transport in shoots of seedling sunflower. Plant Physiol 82:1000–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MB, Stack RW (2002) Effects of dicamba herbicide on Tubercularia ulmea canker development. J Arboric 28:94–98

    Google Scholar 

  • Jacobsen BJ, Hopen HI (1981) Influence of herbicides on aphanomyces root rot of peas. Plant Dis 65:11–16

    Article  CAS  Google Scholar 

  • Jacques RJS, Procópio SDO, Santos JBD, Kasuya MCM, Silva AAD (2010) Sensitivity of Bradyrhizobium strains to glyphosate. Rev Ceres 57:29–33. https://doi.org/10.1590/S0034-737X2010000100006

    Article  Google Scholar 

  • Jaworski EG (1972) Mode of action of N-phosphonomethyl-glycine: inhibition ofaromatic amino acid biosynthesis. J Agric Food Chem 20:1195–1198

    Article  CAS  Google Scholar 

  • Jena PK, Adhya TK, Rao VR (1990) Nitrogen-fixing bacterial population as influenced by butachlor and thiobencarb in rice soils. Zentralbl Mikrobiol 145:457–460

    CAS  Google Scholar 

  • Jensen HL (1964) Studies on soil bacteria (Arthrobacter globiformis) capable of decomposing the herbicide endothal. Acta Agri Scand 14(2–3):193–207

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Carson M (2010) Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathol 100:432–435. https://doi.org/10.1094/PHYTO-100-5-0432

    Article  Google Scholar 

  • Jnawali AD, Ojha RB, Marahatta S (2015) Role of Azotobacter in soil fertility and sustainability—a review. Adv Plant Agric Res 2:00069. http://dx.doi.org/10.15406/apar.2015.02.00069

  • Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144–152

    Article  CAS  Google Scholar 

  • Johal GS, Rahe JE (1984) Effect of soilborne plant-pathogenic fungi on the herbicidal action of glyphosate on bean seedlings. Phytopathol 74:950–955

    Article  CAS  Google Scholar 

  • Johal GS, Rahe JE (1988) Glyphosate, hypersensitivity and phytoalexin accumulation in the incompatible bean anthracnose host-parasite interaction. Physiol Mol Plant Pathol 32:267–281

    Article  CAS  Google Scholar 

  • Johal GS, Rahe JE (1990) Role of phytoalexins in the suppression of resistance of Phaseolus vulgaris to Colletotrichum lindemuthianum by glyphosate. Can J Plant Pathol 12:225–235

    Article  CAS  Google Scholar 

  • Kalia A, Gosal SK (2011) Effect of pesticide application on soil microorganisms. Arch Agron Soil Sci 57:569–596. https://doi.org/10.1080/03650341003787582

    Article  CAS  Google Scholar 

  • Kalinova S, Tahsin N, Hristeva T (2014) Study of oriental tobacco weed infestation in the region of Svilengrad and the influence of some herbicides on soil microflora. Plant Sci LI:63–66 (in Russian)

    Google Scholar 

  • Kang SM, Khan AL, Hamayun M (2012) Acinetobacter calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemical. Pak J Bot 44:365–372

    CAS  Google Scholar 

  • Kapich AN, Jensen KA, Hammel KE (1999) Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461:115–119. https://doi.org/10.1016/s0014-5793(99)01432-5

    Article  CAS  PubMed  Google Scholar 

  • Karavina C (2014) Maize streak virus: a review of pathogen occurrence, biology and management options for smallholder farmers. Afr J Agric Res 9:2736–2742. https://doi.org/10.5897/AJAR2014.8897

    Article  Google Scholar 

  • Karthikeyan N, Prasanna R, Nain L (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Kasa P, Modugapalem H, Battini K (2017) Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities. J Nat Sci Biol Med 6:360–363. https://doi.org/10.4103/0976-9668.160006

    Article  CAS  Google Scholar 

  • Katan J, Eshel Y (1973) Interactions between herbicides and plant pathogens. Residue Rev 45:145–177

    Article  CAS  Google Scholar 

  • Kataria HR, Dodan DS (1982) The influence of two herbicides on the antifungal activity of some fungicides against Pythium butleri and Rhizoctonia solani causing damping-off of cowpea. Pestic Sci 13:583–588

    Article  CAS  Google Scholar 

  • Kataria HR, Dodan DS (1983) Impact of two soil-applied herbicides on damping-off of cowpea caused by Rhizoctonia solani. Plant Soil 73:275–283. https://doi.org/10.1007/BF02197723

    Article  CAS  Google Scholar 

  • Kataria HR, Gisi U (1990) Interactions of fungicide-herbicide combinations against plant pathogensand weeds. Crop Prot 9:403–409

    Article  CAS  Google Scholar 

  • Kawate SC, Kawate S, Ogg AG, Kraft JM (1992) Response of Fusarium solani f. sp. pisi and Pythium ultimum to glyphosate. Weed Sci 40:497–502

    CAS  Google Scholar 

  • Keen NT, Holliday MJ, Yoshikawa M (1982) Effects of glyphosate on glyceollin production and the expression of resistance to Phytophthora megasperma f. sp. glycinea in soybean. Phytopathol 72:1467–1470

    Article  CAS  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  CAS  PubMed  Google Scholar 

  • Kelley WD, South DB (1980) Effects of herbicides on in vitro growth of mycorrhizae of pine (Pinus spp.). Weed Sci 28:599–602

    CAS  Google Scholar 

  • Kim YT, Lee YR, Jin J, Han KH, Kim H, Kim JC, Lee T, Yun SH, Lee YW (2005) Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 58:1102–1113

    Article  CAS  PubMed  Google Scholar 

  • Kizilkaya R (2009) Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. J Environ Biol 30:73–82

    CAS  PubMed  Google Scholar 

  • Kömives T, Casida JE (1983) Acifluorfen increases the leaf content of phytoalexins and stress metabolites in several crops. J Agric Food Chem 31:751–755

    Article  Google Scholar 

  • Konishi T, Sasaki Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci U S A 91:3598–3601. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC43627

    Article  CAS  Google Scholar 

  • Kortekamp A (2008) Knocked out with Basta®!—are herbicides effective against downy mildew of grapevine? J Plant Dis Prot XXI:107–112

    Google Scholar 

  • Kortekamp A (2010) Side effects of the herbicide glufosinate ammonium on Plasmopara viticola and other fungal pathogens. In: Calonnec A, Delmotte F, Emmet B, Gadoury D, Gessler C, Gubler D, Kassemeyer HH, Magarey P, Raynal M, seem R (eds) Proceedings of the 6th international workshop of grapevine downy and powdery mildew, Bordeaux, pp 13–15

    Google Scholar 

  • Kortekamp A (2011) Herbicides and environment. InTech, Rijeka, Croatia. https://library.umac.mo/ebooks/b28109740.pdf

  • Kovacs A, Malligni C (1975) Effect of herbicides on diseases of cultivated plants. Notiziario sulle Malattie delle Piante 92–93:239–252

    Google Scholar 

  • Kraus R, Sikora RA (1983) Effects of herbicide diallate, alone and in combination with aldicarb, on Heterodera schachtii population levels in sugar beet. J Plant Dis Prot 90: 132–139, http://www.jastor.org/stable/43382933

  • Kraus RG, Noel GR, Edwards DI (1982) Effect of preemergence herbicides and aldicarb on Heterodera glycines population dynamics and yield of soybean. J Nematol 14:452 (abstract)

    Google Scholar 

  • Kremer RJ, Donald PA, Keaster AJ, Minor HC (2000) Herbicide impact on Fusarium spp. and soybean cyst nematode in glyphosate-tolerant soybean. Agron Abstr, 257

    Google Scholar 

  • Kremer RJ, Means NE, Kim S (2005) Glyphosate affects soybean root exudation and rhizosphere micro-organisms. Int J Environ Anal Chem 85:1165–1174

    Article  CAS  Google Scholar 

  • Kucharski J, Wyszkowska J (2008) Biological properties of soil contaminated with the herbicide Apyros 75 WG. J Elementol 13:357–371

    Google Scholar 

  • Kuo HC, Détry N, Choi J, Lee YH (2015) Potential roles of laccases on virulence of Heterobasidion annosum s.s. Microb Pathog 81:16–21

    Article  CAS  PubMed  Google Scholar 

  • La Rocca N, Bonora A, Dalla Vecchia F, Barbato R, Rascio N (1998) Effects of amitrole and norflurazon on carotenogenesis in barley plants grown at different temperatures. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol V. Kluwer, Dordrecht, pp 3459–3462

    Google Scholar 

  • Lenart AM (2012) J Environ Sci Heal B 47(1):7–12

    Google Scholar 

  • La Rocca N, Rascio N, Oster U, Rüdiger W (2007) Inhibition of lycopene cyclase results in accumulation of chlorophyll precursors. Planta 225:1019–1029. https://doi.org/10.1007/s00425-006-0409-7

    Article  CAS  PubMed  Google Scholar 

  • Lai M, Semeniuk G (1970) Picloram-induced increase of carbohydrate exudation from corn seedlings. Phytopathol 60:563–564

    Article  CAS  Google Scholar 

  • Lake DB, Ippoliti DJ, Brandow CC, Otrosina WJ (1981) Effect of herbicides on the growth of Pisolithus tinctorius and Scleroderma aurantium in pure culture. Québec, Fifth N Am Conf Mycorrhizae, p 62

    Google Scholar 

  • Lal R (2006) Encyclopedia of soil science, vol 1, 2nd edn. CRC Press, Taylor & Francis Group, New York

    Google Scholar 

  • Lal R, Nagarajan K (1988) In vitro evaluation of pesticides against Sclerotium rolfsii Sacc. Causing collar rot of tobacco. Pestol 11:8

    Google Scholar 

  • Landini S, Graham MY, Graham TL (2003) Lactofen induces isoflavin accumulation and gyceollin elicitation competency in soybean. Phytochem 62:865–874

    Article  CAS  Google Scholar 

  • Lange R, McLaren D (2002) Fusarium wilt—a new disease of canola. http://www.665umanitoba.ca/afs/agronomists conf/2002/pdf/lange.pdf

  • Lanini W, Kogan M (2005) Biology and management of Cuscuta in crops. Cienc Invest Agrar 32:165–179

    Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17. https://doi.org/10.1016/j.micres.2013.09.012

    Article  PubMed  Google Scholar 

  • Larson RL, Hill AL, Fenwick A, Kniss AR, Hanson LE, Miller SD (2006) Influence of glyphosate on rhizoctonia and fusarium root rot in sugar beet. Pest Manag Sci 62:182–192

    Article  CAS  Google Scholar 

  • Latha PC, Gopal H (2010) Effects of herbicides on the growth and the activity of Azospirillum lipoferum and Bacillus megaterium var phosphaticum under in vitro conditions. Int J Plant Prot 3:50–54

    Google Scholar 

  • Levene BC, Owen MDK, Tylka GL (1998) Response of soybean cyst nematode on soybeans (Glycine max) to herbicides. Weed Sci 46:264–270

    CAS  Google Scholar 

  • Levesque CA, Rahe JE (1992) Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Annu Rev Phytopathol 30:579–602

    Article  CAS  PubMed  Google Scholar 

  • Levesque CA, Rahe JE, Eaves DM (1987) Effects of glyphosate on Fusarium spp.: its influence on root colonization of weeds, propagule density in the soil, and on crop emergence. Can J Microbiol 33:354–360

    Article  CAS  Google Scholar 

  • Li DY, Eberspcher J, Wagner B, Kuntzer J, Lingens F (1991) Degradation of 2,4,6-trichlorophenol by Azotobacter sp. Strain GP1. Appl Environ Microbiol 57:1920–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Miao W, Gong C, Jiang H, Ma W, Zhu S (2013) Effects of prometryn and acetochlor on arbuscular mycorrhizal fungi and symbiotic system. Lett Appl Microbiol 57:122–128. https://doi.org/10.1111/lam.12084

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Punja ZK, Rahe JE (1995) Effect of Pythium spp. and glyphosate on phytoalexin production and exudation by bean (Phaseolus vulgaris L.) roots grownin different media. Physiol Mol Plant Pathol 47:391–405

    Article  CAS  Google Scholar 

  • Liu L, Punja ZK, Rahe JE (1997) Altered root exudation and suppression of induced lignification as mechanisms of predisposition by glyphosate of bean roots (Phaseolus vulgaris L.) to colonization by Pythium spp. Physiol Mol Plant Pathol 51:111–127

    Article  CAS  Google Scholar 

  • Liu CA, Zhong H, Vargas J, Penner D, Sticklen M (1998) Prevention of fungal diseases in transgenic, bialaphos- and glufosinate-resistant creeping bentgrass (Agrostis palustris). Weed Sci 46:139–146

    CAS  Google Scholar 

  • Liu B, Geisler LJ, Jackson-Ziems TA, Wegulo SN, Harveson RM, Korus KA, Klein RN (2012) Major fusarium diseases on corn, wheat, and soybeans in Nebraska. NebGuide G2181. http://extensionpublications.unl.edu/assets/html/g2181/build/g2181.htm

  • Lockert CK, Hoagland KD, Siegfried BD (2006) Comparative sensitivity of freshwater algae to atrazine. Bull Environ Contam Toxicol 76:73–79

    Article  CAS  PubMed  Google Scholar 

  • LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci U S A 100:567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotan-Pompan M, Cohen R, Yarden O, Portnoy V, Burger Y, Katzir N (2007) Trifluralin herbicide-induced resistance of melon to fusarium wilt involves expression of stress- and defense-related genes. Mol Plant Pathol 8:9–22

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie KA, Macrae IC (1972) Tolerance of the N-fixing system of Azotobacter vinelandii to four commonly used pesticides. Antonie Leeuwenhoek 38:529–535

    Article  CAS  Google Scholar 

  • Madhavi B, Anand CS, Bharathi A, Polasa H (1994) Biotoxic effects of pesticides on symbiotic properties of rhizobial species. Bull Environ Contam Toxicol 52:87–94

    Article  CAS  PubMed  Google Scholar 

  • Malty JD, Siqueira JO, Moreira FMD (2006) Effects of glyphosate on soybean symbiotic microorganisms, in culture media and in greenhouse. Pesqui Agropecu Bras 41:285–291

    Google Scholar 

  • Mårtensson AM (1992) Effects of agrochemicals and heavy metals on fast-growing rhizobia and their symbiosis with small-seeded legumes. Soil Biol Biochem 24:435–445

    Article  Google Scholar 

  • Mårtensson AM, Nilsson ÅK (1989) Effects of chlorsulfuron on Rhizobium grown in pure culture and in symbiosis with alfalfa (Medicago sativa) and red clover (Trifolium pretense). Weed Sci 37:445–450

    Google Scholar 

  • Marsh JA, Wingfield GI, Da Vies HA, Grossbaed E (1978) Simultaneous assessment of various responses of the soil microflora to bentazone. Weed Res 18(5):293–300

    Article  CAS  Google Scholar 

  • Martin DP, Shepherd DN (2009) The epidemiology, economic impact and control of maize streak disease. Food Sec 1:305–315. https://doi.org/10.1007/s12571-009-0023-1

    Article  Google Scholar 

  • Martin DP, Shepherd DN, Rybicki EP (2008) Maize streak virus. In: Mahy BWJ, van Regenmortel MHV (eds) Desk encyclopedia of plant and fungal virology. Academic Press, Elsevier, pp 209–217

    Google Scholar 

  • Martín A, Moreno M, Marin P (1993) Azotobacter and Azospirillum as potential nitrogen fertilizers. Commun Soil Science Plant Anal 24:255–260. https://doi.org/10.1080/00103629309368796

    Article  Google Scholar 

  • Martinez CO, Silva CMMS, Fay EF, Maia AHN, Abakerli RB, Durrant LR (2008) Degradation of the herbicide sulfentrazone in a Brazilian Typic haploudox soil. Soil Biol Biochem 40:879–886

    Article  CAS  Google Scholar 

  • Martinez-Toledo MV, Salmeron MV, Gonzalez JL (1990) Effect of phenoxy and benzoic acid herbicides on nitrogenase activity and growth of Azospirillum brasilense. Soil Biol Biochem 22:879–881. https://doi.org/10.1016/0038-0717(90)90172-V

    Article  CAS  Google Scholar 

  • Martinez-Toledo MV, Salmeron MV, Golzalez L (1991) Effect of simazine on the biological activity of Azotobacter chroococcum. Soil Sci 151:459–467

    Article  CAS  Google Scholar 

  • Marx DH, Cordell CE (1989) The use of specific ectomycorrhizas to improve artificial forestation practices. In: Whipps JM, Lumsden RD (eds) Biotechnology of fungi for improving plant growth. Academic Press, New York, pp 1–25

    Google Scholar 

  • McCay-Buis TS (1998) Ramifications of microbial interactions conditioning take-all of wheat. Ph.D. thesis. Purdue University, West Lafayette, IN

    Google Scholar 

  • McGrann GRD, Grimmer MK, Mutasa-Göttgens ES, Stevens M (2009) Progress towards the understanding and control of sugar beet rhizomania disease. Mol Plant Pathol 10:129–141. https://doi.org/10.1111/j.1364-3703.2008.00514.x

    Article  CAS  PubMed  Google Scholar 

  • Mekwatanakarn P, Sivasithamparam K (1987) Effect of certain herbicides on saprophytic survival and biological suppression of the take-all fungus. New Phytol 106:153–159

    Article  CAS  Google Scholar 

  • Meriles JM, Vargas Gil S, Haro RJ, March GJ, Guzmán CA (2006) Glyphosate and previous crop residue effect on deleterious and beneficial soil-borne fungi from a peanut-corn-soybean rotations. J Phytopathol 154:309–316

    Article  CAS  Google Scholar 

  • Merrill AR, Lembi CA (2009) Applied weed science: including the ecology and management of invasive plants. Pearson Prentice Hall

    Google Scholar 

  • Mikona C, Jelkmann W (2010) Replication of Grapevine leafroll-associated virus-7 (GLRaV-7) by Cuscuta species and its transmission to herbaceous plants. Plant Dis 94:471–476

    Article  CAS  PubMed  Google Scholar 

  • Miller WA, Rasochova L (1997) Barley yellow dwarfviruses. Annu Rev Phytopathol 35:167–190

    Article  CAS  PubMed  Google Scholar 

  • Miller JH, Carter CH, Garber RH, DeVay JE (1979) Weed and disease responses to herbicides in single- and double-row cotton (Gossypium hirsutum). Weed Sci 27:444–449

    CAS  Google Scholar 

  • Milošević NA, Govedarica MM (2001) Uticaj prometrina na mikrobiološka svojstva zemljišta pod sojom i suncokretom. V Jug Sav Zašt Bil 12:3–7

    Google Scholar 

  • Milošević NA, Govedarica MM (2002) Effect of herbicides on microbiological properties of soil. Proc Nat Sci, Matica Srpska Novi Sad 102:5–21

    Article  Google Scholar 

  • Mirzae A, Vazan S, Naseri R (2010) Response of yield and yield components of safflower (Carthamus tinctorius L.) to seed inoculation with Azotobacter and Azospirillum and different nitrogen levels under dry land conditions. World Appl Sci J 11:1287–1291

    Google Scholar 

  • Moody CS, Hassan HM (1982) Mutagenicity of oxygen free radicals. P Nat A Sci 79(9):2855–2859

    Article  CAS  Google Scholar 

  • Mohamed AT, El-Hussein AA, El Siddig MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms, biodegradation of herbicides. Biotechnol 10:274–279. https://doi.org/10.3923/biotech.2011.274.279

    Article  CAS  Google Scholar 

  • Mohiuddin M, Mohammed MK (2014) Fungicide (carbendazim) and herbicides (2,4-D and atrazine) influence on soil microorganisms and soil enzymes of rhizospheric soil of groundnut crop. Int J Recent Sci Res 5:585–589

    Google Scholar 

  • Molisch H (1937) Der einfluss einer pflanze auf die andere- allelopathie. Fischer, Jena

    Google Scholar 

  • Morales J, Gallardo S, Vásquez C, Ríos Y (2000) Patrón de emergência, longevidad, parasitismo y proporción sexual de Telenomus remus (Hymenoptera: Scelionidae) com relación al cogollero Del maíz. Bioagro 12:47–54

    Google Scholar 

  • Mouhanna AM, Langen G, Schlösser E (2008) Weeds as alternative hosts for BSBV, BNYVV, and vector Polymyxa betae (German isolate). J Plant Dis Prot 115:193–198. https://doi.org/10.1007/BF03356263

    Article  CAS  Google Scholar 

  • Mousavi SK, Zand E, Saremi H (2004) Physiological function and application of herbicides. Zanjan University Press, Zanjan, p 286

    Google Scholar 

  • Moustafa-Mahmoud SM, Sumner DR, Ragab MM, Ragab MM (1993) Interactions of fungicides, herbicides and planting date with seedling diseases of cotton caused by Rhizoctonia solani AG-4. Plant Dis 77:79–86

    Article  CAS  Google Scholar 

  • Musarrat J, Bano N, Rao RAK (2000) Isolation and characterization of 2,4-dichlorophenoxyacetic acid-catabolizing and their biodegradation efficiency in soil. World J Microbiol Biotechnol 16:495–497

    Article  CAS  Google Scholar 

  • Naderifar M, Daneshian J (2012) Effect of seed inoculation with Azotobacter and Azospirillum and different nitrogen levels on yield and yield components of canola (Brassica napus L.). Iranian J Plant Physiol 3:619–626

    Google Scholar 

  • Naqqash T, Hameed S, Imran A, Hanif MK, Majeed A, van Elsas JD (2016) Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front Plant Sci 7:144. https://doi.org/10.3389/fpls.2016.00144

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson N (2009) Manganese response of conventional and glyphosate-resistant soybean in Kansas. International Plant Nutrition Institute, Southern and Central Great Plains Region, Insights, p 3

    Google Scholar 

  • Nelson KA, Renner KA, Hammerschmidt R (2002a) Effects of protoporphyrinogen oxidase inhibitors on soybean (Glycine max L.) response, Sclerotinia sclerotiorum disease development, and phytoalexin production by soybean. Weed Technol 16:353–359

    Article  CAS  Google Scholar 

  • Nelson KA, Renner KA, Hammerschmidt R (2002b) Cultivar and herbicide selection affects soybean development and the incidence of sclerotinia stem rot. Agron J 94:1270–1281

    Article  CAS  Google Scholar 

  • Nemec S, Tucker D (1983) Effects of herbicides on endomycorrhizal fungi in Florida citrus (Citrus spp.). Weed Sci 31:427–431. https://doi.org/10.1017/S0043174500069320

    Article  Google Scholar 

  • Neubauer R, Avizohar-Hershenson Z (1973) Effect of the herbicide, trifluralin, on rhizoctonia disease in cotton. Phytopathol 63:651–652

    Article  CAS  Google Scholar 

  • Neumann G, Kohls S, Landsberg E, Stock-Oliveira KS, Yamada T, Römheld V (2006) Relevance of glyphosate transfer to non-target plants via the rhizosphere. J Plant Dis Prot 20:963–969

    Google Scholar 

  • Newman MM, Hoilett N, Lorenz N, Dick RP, Liles MR, Ramsier C, Kloepper JW (2016) Glyphosate effects on soil rhizosphere-associated bacterial communities. Sci Total Environ 543:155–160. https://doi.org/10.1016/j.scitotenv.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  • Ngari C, Combier JP, Doré J, Marmeisse R, Gay G, Melayah D (2009) The dominant Hc.SdhR carboxin-resistance gene of the ectomycorrhizal fungus Hebeloma cylinrosporum as a selectable marker for transformation. Curr Genet 55:223231. https://doi.org/10.1007/s00294-009-0231-4

    Article  CAS  Google Scholar 

  • Niewiadomska A (2004) Effect of carbendazim, imazetapir, and thiram on nitrogenase activity, the number of microorganisms in soil and yield of red clover (Trifolium pretense L.). Pol J Environ Stud 13:403–410

    CAS  Google Scholar 

  • Nilsson HE (1973) Influence of the herbicide mecoprop on Gaeumannomyces graminis and take-all of spring wheat. Swed J Agric Res 3:105–113

    CAS  Google Scholar 

  • Nilsson M, Rasmussen U, Bergman B (2005) Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa). FEMS Microbiol Lett 245:139–144. https://doi.org/10.1016/j.femsle.2005.03.010

    Article  CAS  PubMed  Google Scholar 

  • Norman R, Bowers RG, Begon M, Hudson PJ (1999) Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasite-mediated competition. J Theor Biol 200:111–118

    Article  CAS  PubMed  Google Scholar 

  • Ocampo JA, Barea JM (1984) Effect of carbamate herbicides on VA mycorrhizal infection and plant growth. Plant Soil 85:375–383

    Article  Google Scholar 

  • Ohman J, Kommedahl T (1960) Relative toxicity of extracts from vegetative organs of quackgrass to alfalfa. Weeds 8:660–670

    Article  Google Scholar 

  • Oka IN, Pimentel D (1976) Herbicide (2,4-D) increases insect and pathogen pests on corn. Science 193:239–240

    Article  CAS  PubMed  Google Scholar 

  • Olajire DM, Oluyemisi FB (2009) In vitro effects of some pesticides on pathogenic fungi associated with legumes. Aust J Crop Sci 3:173–177

    CAS  Google Scholar 

  • Omar MN, Berge O, Hassanein EE, Shalan SN (1992) In vitro and in situ effects of herbicide thiobencarb on rice - Azospirillum association. Symbiosis 13:55–63

    Google Scholar 

  • Ozturk L, Yazici A, Eker S, Gokmen O, Romheld V, Cakmak I (2008) Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol 177:899–906

    Article  CAS  PubMed  Google Scholar 

  • Page WW, Smith MC, Holt J, Kyetere D (1999) Intercrops, Cicadulina spp., and maize streak virus disease. Ann Appl Biol 135:385–393. https://doi.org/10.1111/j.1744-7348.1999.tb00865.x

    Article  Google Scholar 

  • Pakdaman BS, Kariman K (2006) Sethoxydim, an herbicide with potentially increasing effects on the virulence of fusarium head blight causal Fusarium species. In: 8th conference of European foundation for plant pathology & British society of plant pathology presidential meeting, Copenhagen, p 99

    Google Scholar 

  • Pakdaman BS, Mohammadi Goltapeh E (2007) In vitro studies on the integrated control of rapeseed white stem rot disease through the application of herbicides and Trichoderma species. Pak J Biol Sci 10:7–12

    Article  CAS  PubMed  Google Scholar 

  • Pakdaman BS, Khabbaz H, Goltapeh EM, Afshari HA (2002) In vitro studies on the effects of sugar beet field prevalent herbicides on the beneficial and deleterious fungal species. Pak J Plant Pathol 1:23–24

    Article  Google Scholar 

  • Pakdaman BS, Mohammadi Goltapeh E, Sepehrifar R, Pouiesa M, Rahimi Fard M, Moradi F, Modarres SAM (2007) Cellular membranes, the sites for antifungal activity of the herbicide sethoxydim. Pak J Biol Sci 10:2480–2484

    Article  CAS  PubMed  Google Scholar 

  • Pakdaman BS, Mohammadi Goltapeh E, Soltani BM, Talebi AA, Naderpoor M, Kruszewska JS, Piłsyk S, Sarrocco S, Vannacci G (2013) Toward the quantification of confrontation (dual culture) test: a case study on the biological control of Pythium aphanidermatum with Trichoderma asperelloides. J Biofertil Biopestici 4:2. https://doi.org/10.4172/2155-6202.1000137

    Article  Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636. https://doi.org/10.1007/s00253-013-5206-1

    Article  CAS  PubMed  Google Scholar 

  • Pampulha M, Oliveira A (2006) Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Curr Microbiol 53:238–243

    Article  CAS  PubMed  Google Scholar 

  • Pampulha ME, Ferreira MASS, Oliveira A (2007) Effects of a phosphinothricin based herbicide on selected groups of soil microorganisms. J Basic Microbiol 47:325–331. https://doi.org/10.1002/jobm.200610274

    Article  CAS  PubMed  Google Scholar 

  • Pasaribu A, Mohamad RB, Hashim A, Rahman ZA, Omar D, Morshed MM (2013) Effect of herbicide on sporulation and infectivity of vesicular arbuscular mycorrhizal (Glomus mosseae) symbiosis with peanut plant. J Anim Plant Sci 23:1671–1678

    CAS  Google Scholar 

  • Pastro S, March GJ (1999) In vitro effect of residual herbicides used in peanut on Sclerotium rolfsii. Fitopatologia 34:116–121

    Google Scholar 

  • Pathak D, Roy AK, Deka SC (1996) Effect of herbicides on the growth and sclerotial survival of Rhizoctonia solani Kuhn. Ann Biol 12:245–251

    Google Scholar 

  • Patrick ZA (1971) Phytotoxic substances associated with decomposition in soil of plant residues. Soil Sci 111:13–18

    Article  CAS  Google Scholar 

  • Paul V, Schönbeck F (1976) Untersuchungen über den Einfluss des Herbizide Diallat auf einige Getreidekrankheiten. J Phytopathol 85:1289–1297

    Article  Google Scholar 

  • Paula TR Jr, Comerlato AG, Gavassoni WL, Oliveira VL, Zambolim L (1995) Efeito de glifosate e oxyfluorfen sobre Pisolithus tinctorius e sobre a micorrização de raízes de Eucalyptus grandis. Rev Árvore 19:241–248

    Google Scholar 

  • Payan LA, Johnson AW, Littrell RH (1987) Effects of nematicides and herbicides alone or combined on Meloidogyne incognita egg hatch and development. Ann Appl Nematol 1:67–70

    Google Scholar 

  • Pedraza RO, Bellone CH, de Bellone SC, Sorte PMFB, dos Santos Teixeira KR (2009) Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur J Soil Biol 45:36–43. https://doi.org/10.1016/j.ejsobi.2008.09.007

    Article  CAS  Google Scholar 

  • Percich JA, Lockwood JL (1975) Influence of atrazine on the severity of fusarium root rot in pea and corn. Phytopathology 65(2):154

    Article  CAS  Google Scholar 

  • Pero RW, Owens RG (1971) Simple micromethod for detecting antifungal activity. Appl Microbiol 21:546–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry RN, Beane J (1989) Effects of certain herbicides on the in vitro hatch of Globodera rostochinensis and Heterodera schachtii. RevNématol 12:191–196

    CAS  Google Scholar 

  • Perry RN, Trett MW (1986) Ultrastructure of the eggsell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Rev Nématol 9: 399

    Google Scholar 

  • Pinckard JA, Standifer LC (1966) An apparent interaction between cotton herbicidal injury and seedling blight. Plant Dis Rep 50:172–177

    Google Scholar 

  • Pline WA, Lacy GH, Stromberg V, Hatzios KK (2001) Antibacterial activity of the herbicide glufosinate on Pseudomonas syringae Pathovar Glycina. Pestic Biochem Physiol 71:48–55

    Article  CAS  Google Scholar 

  • Ploetz R, Freeman S, Konkol J, Israeli Y (2015) Tropical race of Panama disease in the Middle East. Phytoparasitica 43:283–293. https://doi.org/10.1007/s12600-015-0470-5

    Article  Google Scholar 

  • Pomari AF, Bueno AF, Bueno RCOF, Menezes Junior AO (2012) Biological characteristics and thermal requirements of the biological control agent Telenomus remus (Hymenoptera: Platygastridae) reared on eggs of different species of the genus Spodoptera (Lepidoptera: Noctuidae). Ann Entomol Soc Am 105:73–81

    Article  Google Scholar 

  • Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2405

    Article  CAS  Google Scholar 

  • Power AG, Mitchell CE (2004) Pathogen spillover in disease epidemics. Am Nat 164:S79–S89

    Article  PubMed  Google Scholar 

  • Praveena R, Naseema A, George S (2007) Effect of herbicides on Fusarium pallidoroseum- a potential biocontrol agent of water hyacinth [Eichhornia crassipes (Mart.) Solms]. J Trop Agric 45:55–57

    CAS  Google Scholar 

  • Prescott JM, Burnett PA, Saari EE, Ransom J, Bowman J, de Milliano W, Singh RP, Bekele G (1986) Wheat diseases and pests: a guide for field identification. CIMMYT, Mexico

    Google Scholar 

  • Procópio SO, Fernandes MF, Teles DA, Sena Filho JG, Cargnelutti Filho A, Vargas L, Sant’anna SAC (2011) Toxicity of herbicides applied on sugarcane to the diazotrophic bacterium Azospirillum brasilense (in Portugese). Planta Daninha 29:1079–1089

    Article  Google Scholar 

  • Punja ZK (1985) The biology, ecology and control of Sclerotium rolfsii. Ann Rev Phytopathol 23:97–127

    Article  CAS  Google Scholar 

  • Putnam AR, Weston LA (1986) Adverse impacts of allelopathy in agricultural systems. In: Putnam AR, Tang CS (eds) The science of allelopathy. Willey, New York, pp 43–56

    Google Scholar 

  • Radivojevic L, Santric L, Stankovic-Kalezic R, Brkic D, Janjic V. (2003) Effects of Metribuzin on the abundance and activity of some groups of soil microorganisms. Pesticidi 18(2):99–107

    Article  CAS  Google Scholar 

  • Radke VL, Grau CR (1986) Effects of herbicides on carpogenic germination of Sclerotinia sclerotiorum. Plant Dis 70:19–23

    Article  CAS  Google Scholar 

  • Rahe JE, Levesque CA, Johal GS (1990) Synergistic role of soil fungi in the herbicidal efficacy of glyphosate. In: Hoagland RE (ed) Biological weed control using microbes and microbial products as herbicides. Symposium, 9–14 Apr 1989. American Chemical Society, Washington DC, pp 260–275

    Google Scholar 

  • Rahman KA, Batra AL (1945) The onion thrips, Thrips tabaci (Lindeman) (Thripidae: Terebrantia: Thysanoptera). Indian J Agric Sci 14:308–310

    Google Scholar 

  • Ramesh G, Nadanassababady T (2005) Impact of herbicides on weeds and soil ecosystem of rainfed maize (Zea mays L.). Indian J Agric Res 39:31–36

    Google Scholar 

  • Ratcliff AW, Busse MD, Shestak CJ (2006) Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl Soil Ecol 34:114–124

    Article  Google Scholar 

  • Ratnayake M, Audus LJ (1978) Studies on the effects of herbicides on soil nitrification. II. Pestic Biochem Physiol 8:170–185. https://doi.org/10.1016/0048-3575(78)90037-8

    Article  CAS  Google Scholar 

  • Raviv M (2010) The use of mycorrhiza in organically-grown crops under semi arid conditions: a review of benefits, constraints and future challenges. Symbiosis 52:65–74

    Article  Google Scholar 

  • Reddy BVS, Sanjana Reddy P, Sadananda AR, Dinakaran E, Ashok Kumar A, Deshpande SP, Srinivasa Rao P, Sharma HC, Sharma R, Krishnamurthy L, Patil JV (2012) Postrainy season sorghum: constraints and breeding approaches. J SAT Agric Res 10:1–12

    Google Scholar 

  • Redinbaugh MG, Jones MW, Gingery RE (2004) The genetics of virus resistance in maize (Zea mays L). Maydica 49:183–190

    Google Scholar 

  • Rejon A, Garcia-Romera I, Ocampo JA, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence competition in a wheat-ryegrass association treated with the herbicide diclofop. Appl Soil Ecol 7:51–57

    Article  Google Scholar 

  • Rengel Z (1999) Mineral nutrition of crops: fundamental mechanisms and implications. Food Products Press, London

    Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  CAS  PubMed  Google Scholar 

  • Rengel Z, Gutteridge R, Hirsch P, Hornby D (1996) Plant genotype, micronutrient fertilization and take-all infection influence bacterial populations in therhizosphere of wheat. Plant Soil 183:269–277

    Article  CAS  Google Scholar 

  • Rezaei F, Yarnia M, Farajzadeh EM (2006) Evaluation of allelopathical effects of Chenopodium album, Amaranthus retroflexus, and Cynodon dactylon on germination and seedling growth of safflower. In: Nezamabadi N (ed) Proceedings of the 17th Iranian plant protection congress, vol III, Weeds, 2–5, Sept 2006, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, p 16

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, Orlando, FL

    Google Scholar 

  • Rinaudo V, Brberi B, Giovannetti M, van der Heijden M (2010) Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333:1–5

    Article  CAS  Google Scholar 

  • Rivarola V, Fabra A, Mori G, Balegno H (1992) In vitro protein synthesis is affected by the herbicide 2,4-dichlorophenoxyacetic acid in Azospirillum brasilense. Toxicol 73:71–79

    Article  CAS  Google Scholar 

  • Roberti R, Badiali F, Pisi A, Veronesi A, Pancaldi D, Cesari A (2006) Sensitivity of Clonostachys rosea and Trichoderma spp. as potential biocontrol agents to pesticides. J Phytopathol 154:100–109

    Article  CAS  Google Scholar 

  • Roebke TW, Windels CE, Dexter AG (2002) Lack of herbicide effect on severity of aphanomyces root rot of sugar beet. J Sugar Beet Res 39:75–87

    Article  Google Scholar 

  • Romanowska-Duda Z, Wolska A, Malecka A (2004) Influence of blue-green algae as nitrogen fertilizer supplier in regulation of water status in grapevines under stress conditions. In: Medrano H (ed) Book of abstracts, COST 858, water transport and aquaporins in grapevines, 20–23 Oct 2004. University of the Balearic Islands, Palma, Alcudia, Spain, p 10

    Google Scholar 

  • Romanowska-Duda Z, Grzesik M, Owczarczyk A, Mazur-Marzec H (2010) Impact of intra and extracellular substances from cyanobacteria on the growth and physiological parameters of grapevine (Vitis vinifera). In: Arola L, Carbonell J (eds) 20th international conference on plant growth substance (IPGSA), book of abstracts, vol 28. Universitat Rovira I Virgili, Tarragona, p 118

    Google Scholar 

  • Romero MC, Urrutina MI, Reinoso EH, Della Vedova R, Reynaldi FJ (2014) Atrazine degradation by wild filamentous fungi. Global Res J Microbiol 4:10–16

    Google Scholar 

  • Romero-Perdomo F, Campos PJC, Rodríguez AJ, Rusinque MC, Buitrago RRB (2015) Efecto de fertilizantes y herbicidas sobre el crecimiento in vitro de Azospirillum brasilense C16. Rev Soc Ven Microbiol 35:117–120

    Google Scholar 

  • Ronco MG, Ruscitti MF, Arango MC, Beltrano J (2008) Glyphosate and mycorrhization induce changes in plant growth and in root morphology and architecture in pepper plants (Capsicum annuum L.). J Hortic Sci Biotechnol 83:497–505

    Article  CAS  Google Scholar 

  • Rosas-Saavedra, C, Stange C (2016) Biosynthesis of carotenoids in plants: enzymes and color. In: Stange C (ed) Carotenoids in nature. Subcellular biochemistry, vol 79. Springer, Cham. http://doi.org/10.1007/978-3-319-39126-7_2

    Google Scholar 

  • Rose MT, Cavagnaro TR, Scanlan CA, Rose TJ, Vancov T, Kimber S, Kennedy IR, Kookana RS, Zwieten LV (2016) Impact of herbicides on soil biology and function. Adv Agron 136:133–220. https://doi.org/10.1016/bs.agron.2015.11.005

    Article  Google Scholar 

  • Roseman TS, Graham RD, Arnott HJ, Huber DM (1991) The interaction of temperature with virulence and manganese oxidizing potential in the epidemiology of Gaeumannomyces graminis. Phytopathol 81:S1215

    Google Scholar 

  • Rosenberger D, Fargione M (2004) Apple pest report 12, 6. University of Maine Cooperative Extension Service

    Google Scholar 

  • Roslycky EB (1982) Glyphosate and the response of the soil microbiota. Soil Biol Biochem 14:87–92

    Article  CAS  Google Scholar 

  • Rosolem CA, Gabriel GJM, Lisboa IP, Zoca SM (2009) Manganese uptake and distribution in soybeans as affected by glyphosate. Proc Int Plant Nutrition Colloquium XVI. http://escholarship.org/uc/item/3f53794z?query=Rosolem#page-4

  • Rouillon R, Poulon C, Bastide J, Coste CM (1990) Degradation of the herbicide chlorpropham by some ectomycorrhizal fungi in pure culture. Agric Ecosyst Environ 28:421–424. https://doi.org/10.1016/0167-8809(90)90073-M

    Article  Google Scholar 

  • Rovira AD, McDonald HJ (1986) Effect of the herbicide chlorsulfuron on rhizoctonia bare patch and take-all of barley and wheat. Plant Dis 70:879–882

    Article  CAS  Google Scholar 

  • Royuela M, Gonzalez A, Arrese-Igor C, Aparicio-Tejo PM, Gonzalez-Murua C (1998) Imazethapyr inhibition of acetolactate synthase in Rhizobium and its symbiosis with pea. Pestic Sci 52:372–380

    Article  CAS  Google Scholar 

  • Rudolf VH, Antonovics J (2005) Species coexistence and pathogens with frequency-dependent transmission. Am Nat 166:112–118

    Article  PubMed  Google Scholar 

  • Ruppel RF (1965) A review of the genus Cicadulina (Hemiptera, Cicadellidae). Michigan State Univ Biol Ser 2:385–428

    Google Scholar 

  • Ruppel EG, Hecker RJ (1982) Increased severity of rhizoctonia root rot in sugar beet treated with systemic insecticides. Crop Prot 1:75–81

    Article  CAS  Google Scholar 

  • Ruppel EG, Hecker RJ, Schweizer EE (1982) Rhizoctonia root rot of sugarbeet unaffected by herbicides. J Am Soc Sugar Beet Technol 21:203–209

    Article  Google Scholar 

  • Rusevska K, Karadelev M, Phosri C, Duenas M, Teresa Telleria M, Watling R, Martín MP (2015) DNA barcoding is an effective tool for differentiating Pisolithus species from Macedonia. Mycotaxon 130:1007–1016. https://doi.org/10.5248/130.1007

    Article  Google Scholar 

  • Russin JS, Carter CH, Griffin JL (1995) Effects of grain sorghum (Sorghum bicolor) herbicides on charcoal rot fungus. Weed Technol 9:343–351

    Article  CAS  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212

    Article  Google Scholar 

  • Saha KC, Sannigrahi S, Mandal LN (1985) Effect of inoculation of Azospirillum lipoferum on nitrogen fixation in rhizosphere soil, their association with roots, yield and nitrogen uptake by mustard (Brassica juncea). Plant Soil 87:273–280

    Article  Google Scholar 

  • Sahu D, Priyadarshani I, Rath B. (2012) Cyanobacteria–as potential biofertilizer. CIB Tech J Microbiol 1:20–26

    Google Scholar 

  • Salmeron V, Martinez-Toledo MV, Gonzalez-Lopez J (1991) Effects of alachlor and metolachlor on the biological activity of Azospirillum brasilense grown in chemically defined and dialyzed-soil media. Environ Toxicol Chem 10:493–499

    Article  CAS  Google Scholar 

  • Sanogo S, Yang XB, Scherm H (2000) Effects of herbicides on Fusarium solani f. sp. glycines and development of sudden death syndrome in glyphosate-tolerant soybean. Phytopathol 90:57–66

    Article  CAS  Google Scholar 

  • Sanogo S, Yang XB, Scherm H (2001) Field response of glyphosate-tolerant soybean to herbicides and sudden death syndrome. Plant Dis 85:773–779

    Article  CAS  PubMed  Google Scholar 

  • Santos JB, Jacques RJS, Procópio SO, Kasuya MCM, Silva AA, Santos EA (2004) Effects of different glyphosate commercial formulations on Bradyrhizobium strains. Planta Daninha 22:293–299. https://doi.org/10.1590/S0100-83582004000200017

    Article  Google Scholar 

  • Santos JB, Jakelaitis A, Silva AA, Costa MD, Manabe A, Silva MCS (2006) Action of two herbicides on the microbial activity of soil cultivated with common bean (Phaseolus vulgaris) in conventional-till and no-till systems. Weed Res 46:284–289

    Article  CAS  Google Scholar 

  • Santos KB, Meneguim AM, Santos WJ, Neves PMOJ, Santos RB (2010) Caracterização dos danos de Spodoptera eridania (Cramer) e Spodoptera cosmioides (Walker). Neotrop Entomol 39:626–631

    Article  PubMed  Google Scholar 

  • Sanyal D, Shrestha A (2008) Direct effect of herbicides on plant pathogens and disease development in various cropping systems. Weed Sci 56:155–160. https://doi.org/10.1614/WS-07-081.1

    Article  CAS  Google Scholar 

  • Saraiva AS, Sarmento RA, Pedro-Neto M, Teodoro AV, Erasmo EA, Belchior DC, de Azevedo EB (2016) Glyphosate sub-lethal toxicity to non-target organisms occurring in Jatropha curcas plantations in Brazil. Exp Appl Acarol 70:179–187. https://doi.org/10.1007/s10493-016-0078-6

    Article  CAS  PubMed  Google Scholar 

  • Saul A (2003) Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J 2:32–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawicka A, Selwet M (1998) Effect of active ingredients on Rhizobium and Bradyrhizobium legume dinitrogen fixation. Pol J Environ Stud 7:317–320

    CAS  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262

    Article  Google Scholar 

  • Schmidt KA, Ostfeld RS (2001) Biodiversity and the dilution effect in disease ecology. Ecol 82:609–619

    Article  Google Scholar 

  • Schmitt DP, Corbin FT, Nelson LA (1983) Population dynamics of Heterodera glycines and soybean response in soils treated with selected nematicides and herbicides. J Nematol 15:432–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider MI, Sanchez N, Pineda S, Chi H, Ronco A (2009) Impact of glyphosate on the development, fertility and demography of Chrysoperla externa (Neuroptera: Chrysopidae): ecological approach. Chemosphere 76:1451–1455

    Article  CAS  PubMed  Google Scholar 

  • Schuldt PN, Wolfe CN (1956) Fungitoxicity of substituted s-triazines. Contrib Boyce Thompson Inst 15:377–393

    Google Scholar 

  • Schulze DG, McCay-Buis TS, Sutton SR, Huber DM (1995) Manganese oxidation states in Gaeumannomyces-infested wheat rhizospheres probedby micro-XANES spectroscopy. Phytopathol 85:990–994

    Article  CAS  Google Scholar 

  • Sdoodee R, Teakle DS (1987) Transmission of tobacco streak virus by Thrips tabaci a new method of plant virus transmission. Plant Pathol 36:377–380

    Article  Google Scholar 

  • Sebiomo A, Ogundero VW, Bankole SA (2011a) Utilisation and biodegradation of atrazine and primextra. J Microbiol Antimicrob 3:64–76

    CAS  Google Scholar 

  • Sebiomo A, Ogundero VW, Bankole SA (2011b) Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr J Biotechnol 10:770–778

    CAS  Google Scholar 

  • Sebiomo A, Ogundero VW, Bankole SA (2012) Effect of four herbicides on soil minerals. Res J Environ Earth Sci 4:617–624

    CAS  Google Scholar 

  • Semeniuk G, Tunac JB (1968) Tordon increase of root rot severity in wheat and corn. Proc S Dak Acad Sci 47:346

    Google Scholar 

  • Sen C, Kaiser SAKM (1972) The role of herbicides in the control of brown spot of paddy caused by Helminthosporium oryzae. Indian J Mycol Plant Pathol 2:152

    CAS  Google Scholar 

  • Shanan NT, Higazy AM (2009) Integrated biofertilization management and cyanobacteria application to improve growth and flower quality of Matthiola incana. J Agric Biol Sci 5:1162–1168

    CAS  Google Scholar 

  • Shannon CE, Weaver EW (1949) A mathematical theory of communication. University of Illinois Press, Urbana, IL

    Google Scholar 

  • Shariatmadari Z, Riahi H, Hashtroudi MS, Ghassempour AR, Aghashariatmaday Z (2013) Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci Plant Nutr 59:535–547. https://doi.org/10.1080/00380768.2013.782253

    Article  CAS  Google Scholar 

  • Sharma SR, Sohi HS (1983) Influence of herbicides on root rot of French beans (Phaseolus vulgaris L.), caused by Rhizoctonia solani. Zentbl Mikrobiol 138:357–361

    CAS  Google Scholar 

  • Sharma U, Adee EA, Pfender WF (1989) Effect of glyphosate herbicide on pseudothecia formation by Pyrenophora tritici-repentis in infested wheat straw. Plant Dis 73:647–650

    Article  CAS  Google Scholar 

  • Sharon A, Amsellem Z, Gressel J (1992) Glyphosate suppression of an elicited response. Increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiol 98:654–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, DiTommaso A, Shen M, Lu W, Li Z (2009) Molecular basis for differential metabolic responses to monosulfuron in three nitrogen-fixing cyanobacteria. Weed Sci 57:133–141. https://doi.org/10.1614/WS-08-024.1

    Article  CAS  Google Scholar 

  • Shepherd AM (1962) New blue R, a stain that differentiates between living and dead nematodes. Nematologica 8:201–208

    Article  Google Scholar 

  • Sidhu SS, Chakravarty P (1990) Effect of selected foresty herbicides on ectomycorrhizal development and seedling growth of lodgepole pine and white spruce under controlled and field environment. Eur J Forest Pathol 20:77–94

    Article  Google Scholar 

  • Simon-Sylvestre G, Fournier JC (1979) Effects of pesticides on the soil microflora. Adv Agron 31:1–92

    CAS  Google Scholar 

  • Singh RN (1961) The role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Reseach, New Delhi

    Google Scholar 

  • Singh RS (2001) Plant disease management. Science Publishers, New Hamshire

    Google Scholar 

  • Singh G (2005) Effects of herbicides on biological nitrogen fixation in grain and forage legumes—a review. Agric Rev 26:133–140

    Google Scholar 

  • Singh G, Wright D (2002) In vitro studies on the effects of herbicides on the growth of rhizobia. Lett Appl Microbiol 35:12–16. https://doi.org/10.1046/j.1472-765X.2002.01117.x

    Article  CAS  PubMed  Google Scholar 

  • Singh AL, Singh PK, Singh PL (1988) Effects of different herbicides on the Azolla and blue-green algal biofertilization of rice. J Agric Sci 111:451–458. https://doi.org/10.1017/S0021859600083623

    Article  CAS  Google Scholar 

  • Singh B, Chatutvedi SN, Singh RH (1999) Influence of the herbicides on the antifungal activity of some fungicides against phytophthora blight of pigeonpea. Indian Phytopathol 52:59–62

    CAS  Google Scholar 

  • Smiley RW, Ogg AG, Cook RJ (1992) Influence of glyphosate on rhizoctonia root rot, growth, and yield of barley. Plant Dis 76:937–942

    Article  CAS  Google Scholar 

  • Smith SE (1980) Mycorrhizas of autotrophic higher plants. Biol Rev 55:475–510

    Article  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann Rev Plant Physiol Plant Mol Biol 39:221–244

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Song T, Martensson L, Eriksson T (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol Ecol 54:131–140. https://doi.org/10.1016/j.femsec.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  • Sorensen AE (1985) Seed dispersal and the spread of weeds. In: Delfosse ES (ed) Proceedings of VI international symposium of biological control of weeds, vol 19, Vancouver, Canada, 19–25 Aug 1984

    Google Scholar 

  • Souza LAB, Silva Filho GN, Oliveira VL (2004) Eficiência de fungos ectomicorrízicos na absorção de fósforo e na promoção do crescimento de eucalipto. Pesq Agropec Bras 39:349–355

    Article  Google Scholar 

  • Spiller H, Gunasekaran M (1990) Ammonia-excreting mutant strain of the cyanobacterium Anabaena variabilis supports growth of wheat. Appl Microbiol Biotechnol 33:477–480. https://doi.org/10.1007/BF00176670

    Article  CAS  Google Scholar 

  • Srinivasan R, Alvarez JM, Bosque-Pérez NA, Eigenbrode SD, Novy RG (2008) Effect of an alternate weed host, hairy nightshade, Solanum sarrachoides, on the biology of the two most important potato leafroll virus (Luteoviridae: Polerovirus) vectors, Myzus persicae and Macrosiphum euphorbiae (Aphididae: Homoptera). Environ Entomol 37:592–600

    PubMed  Google Scholar 

  • Starratt AN, Lazarovits G (1996) Increase in free amino acid levels in tomato plants accompanying herbicide-induced disease resistance. Pestic Biochem Physiol 54:230–240

    Article  CAS  Google Scholar 

  • Stecca CS, Bueno AF, Pasini A, Silva DM, Andrade K, Filho DM (2016) Side-effects of glyphosate on the parasitoid Telenomus remus Nixon (Hymenoptera: Platygastridae). Neotrop Entomol 45:192–200. https://doi.org/10.1007/s13744-016-0363-4

    Article  CAS  PubMed  Google Scholar 

  • Stewart RY (1973) Nitrogen fixation by photosynthetic microorganisms. Annu Rev Microbiol 27:283–318

    Article  CAS  PubMed  Google Scholar 

  • Stewart WDP, Haystead A, Dharmawardene MWN (1975) Nitrogen assimilation and metabolism in blue-green algae. IBP nitrogen fixation by free-living microorganisms, vol 6. Cambridge University Press, Camberidge, pp 129–159

    Google Scholar 

  • Stoklosa A, Nandanavanam R, Puczel U, Upadhyaya MK (2011) Influence of isoxaflutole on colonization of corn (Zea mays L.) roots with arbuscular mycorrhizal fungus Glomus intraradices. Can J Plant Sci 91:143–145

    Article  Google Scholar 

  • Swift C (2010) Dodder. http://www.colostate.edu/Dept/CoopExt/4dmg/Weed/dodder.htm

  • Tajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    Google Scholar 

  • Tamogami S, Kodama O, Hirose K, Akatsuka T (1995) Pretilachlor [2-chloro-N-(2,6-diethylphenyl)-N-(2-propoxyethyhl) acetamide]- and butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-diethlphenyl)acetamide]-induced accumulation of phytoalexin in rice (Oryza sativa) plants. J Agric Food Chem 43:1695–1697

    Article  CAS  Google Scholar 

  • Taubenhaus JJ, Ezekiel WN (1936) A rating of plants with reference to their relative resistance or susceptibility to Phymatotrichum omnivorum. Texas Agric Exp Stn Bull 527:52

    Google Scholar 

  • Tejera N, Lluch C, Martínez-Toledo MV, González-López J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from sugarcane rhizosphere. Plant Soil 270:223–232. https://doi.org/10.1007/s11104-004-1522-7

    Article  CAS  Google Scholar 

  • Thompson IA, Huber DM (2007) Manganese and plant disease. In: Datnoff LE, Elmer WE, Huber DM (eds) Mineral nutrition and plant disease. American Phytopathological Society, St. Paul, pp 139–153

    Google Scholar 

  • Thompson IA, Guest CA, Schulze DG, Huber DM (1998) Manganese reduction and uptake in wheat rhizospheres as influenced by manganese reducing and oxidizing bacteria. Phytopathol 88:S118

    Google Scholar 

  • Thompson IA, Huber DM, Guest CA, Sculze DG (2005) Fungal manganese oxidation in a reduced soil. Environ Microbiol 7:1480–1487

    Article  CAS  PubMed  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiol 140:19–26

    Article  CAS  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    Article  CAS  Google Scholar 

  • Toledo REBD, Victoria Filho R, Alves PLDCA, Pitelli RA, Lopes MAF (2003) Faixas de controle de plantas daninhas e seus reflexos no crescimento de plantas de eucalipto. Sci Forum 26:78–92

    Google Scholar 

  • Tomkiel M, Baćmaga M, Wyszkowska J, Kucharski J, Borowik A (2015) The effect of carfentrazone-ethyl on soil microorganisms and soil enzymes activity. Archiv Environ Protect 41:3–10. https://doi.org/10.1515/aep-2015-0025

    Article  Google Scholar 

  • Topp ED, Xun LY, Orser CS (1992) Biodegradation of the herbicide bromoxynil (3, 5-dibromo-4-hydroxybenzonitrile) by purified pentachlorophenol hydroxylase and whole cells of Flavobacterium sp. strain ATCC 39723 is accompanied by cyanogenesis. Appl Environ Microbiol 58:502–506

    Google Scholar 

  • Toubia-Rahme H, Ali-Haimoud DE, Barrett G, Albertini L (1995) Inhibition of Dreschlera teres sclerotioid formation in barley straw by application of glyphosate or paraquat. Plant Dis 79:595–598

    Article  CAS  Google Scholar 

  • Trappe JM, Molina R, Castellano M (1984) Reactions of mycorrhizal fungi and mycorrhizal formation to pesticides. Annu Rev Phytopathol 22:331–359

    Article  CAS  Google Scholar 

  • Tripathi SK, Sathie KB, Vyas SC (1988) Chemical control of collar rot of pea. Indian Phytopathol 41:143–144

    Google Scholar 

  • Tubajika KM, Damann KE (2002) Glufosiante-ammonium reduces growth and aflatoxin B1 production by Aspergillus flavus. J Food Prod 65:1483–1487

    Article  CAS  Google Scholar 

  • Tuffi Santos LD, Ferreira FA, Ferreira LR, Duarte WM, Tiburcio RAS, Santos MV (2006) Intoxicação de espécies de eucalipto submetidas à deriva do glyphosate. Planta Daninha 24:359–364

    Google Scholar 

  • Tuor U, Wariishi H, Schoemaker HE, Gold MH (2002) Oxidation of phenolic arylglycerol .beta.-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an .alpha.-carbonyl model compound. Biochemistry 31(21):4986–4995

    Article  CAS  PubMed  Google Scholar 

  • Uchimiya H, Iwata M, Nojiri C, Samarajeewa PK, Takamatsu S, Ooba S, Anzai H, Christensen AH, Quail PH, Toki S (1993) Bialaphos treatment of transgenic rice plants expressing the bar gene prevents infection by the sheath leaf blight pathogen (Rhizoctonia solani). Nat Biotechnol 11:835–836

    Article  CAS  Google Scholar 

  • Vaishampayan A (1984) Biological effects of an herbicide on a nitrogen-fixing cyanobacterium (blue-green alga): an attempt for introducing herbicide-resistance. New Phytol 96:7–11, PMID: 808179, http://dx.doi.org/10.1111/j.1469-8137.1984.tb03537.x

    Article  CAS  Google Scholar 

  • Van Buskirk J, Ostfeld RS (1995) Controlling Lyme disease risk by modifying the density and species composition of tick hosts. Ecol Appl 5:1133–1140

    Article  Google Scholar 

  • Vannette RL, Hunter MD (2009) Mycorrhizal fungi as mediators of defence against insect pests in agricultural systems. Agric Forest Entomol 11:351–358. https://doi.org/10.1111/j.1461-9563.2009.00445.x

    Article  Google Scholar 

  • Vasavan MG, Rajan KM, Thomas MJ (1980) Herbicides in plant disease control. Int Rice Res New 5:18

    Google Scholar 

  • Vázquez MB, Bianchinotti MV (1999) Fungi degrading metsulfuron methyl in agricultural soils of Argentina. Int J Exp 52:59–62

    Google Scholar 

  • Venkataraman GS (1981) Algal biofertilizer for rice. IARI, New Delhi, India

    Google Scholar 

  • Viator BJ, Griffin JL, Ellis JM (2002) Red morning glory (Ipomoea coccinea) control with sulfentrazone and azafenidin applied at Layby in sugarcane (Saccharum spp.). Weed Technol 16:142–148

    Article  CAS  Google Scholar 

  • Vieira RF, Silva CMMS, Silveira APD (2007) Soil microbial biomass C and symbiotic processes associated with soybean after sulfentrazone herbicide application. Plant Soil 300:95–103

    Article  CAS  Google Scholar 

  • Wan MT, Rahe JE, Watts RG (1998) A new technique for determining the sublethal toxicity of pesticides to the vascular-arbuscular mycorrhizal fungus Glomus intraradices. Environ Toxicol Chem 17:1421–1428

    CAS  Google Scholar 

  • Wang Y, Browning M, Ruemmele BA, Bridger A, Chandlee JM, Kausch AP, Jackson N (2003) Glufosinate reduces fungal diseases in transgenic glufosinate-resistant bentgrasses (Agrostis spp.). Weed Sci 51:130–137

    Article  CAS  Google Scholar 

  • Ward EWB (1984) Suppression of metalaxyl activity by glyphosate. Evidence that host defence mechanisms contribute to metalaxyl inhibition of Phytopthora megasperma f. sp. glycinea to soybeans. Physiol Plant Pathol 25:381–386

    Article  CAS  Google Scholar 

  • Wardle DA, Parkinson D (1991) Relative importance of the effect of 2,4-D, glyphosate, and environmental variables on the soil microbial biomass. Plant Soil 134:209–219

    Article  CAS  Google Scholar 

  • Wariishi H, Valli K, Renganathan V, Gold MH (1989) Thiol-mediated oxidation of nonphenolic lignin model compunds by manganese peroxidase of Phanerochyte chrysosporium. J Biol Chem 264:14185–14191

    CAS  PubMed  Google Scholar 

  • Wheeler H (1975) Plant pathogenesis. Springer, Berlin

    Book  Google Scholar 

  • Wiese MV (1987) Compendium of wheat disease, 2nd edn. APS Press, The American Phytopathological Society

    Google Scholar 

  • Wilkinson V, Lucas RL (1969) Effects of herbicides on the growth of soil fungi. New Phytol 68:709–719

    Article  CAS  Google Scholar 

  • Willment JA, Martin DP, Rybicki EP (2001) Analysis of the diversity of African streak mastreviruses using PCR-generated RFLP’s and partial sequence data. J Virol 93:75–87. https://doi.org/10.1094/PHYTO.2002.92.1.81

    Article  CAS  Google Scholar 

  • Wilson JT, Greene S, Alexander M (1979) Effect of interactions among algae on nitrogen fixation by blue-green algae (cyanobacteria) in flooded soils. Appl Environ Microbiol 38:916–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wisler GC, Norris RF (2005) Interactions between weeds and cultivated plants as related to management of plant pathogens. Weed Sci 53:914–917. https://doi.org/10.1614/WS-04-051R.1

    Article  CAS  Google Scholar 

  • Wong ATS, Tylka GL, Hartzler RG (1993) Effects of eight herbicides on in vitro hatching of Heterodera glycines. J Nematol 25:578–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woolhouse MEJ, Taylor LH, Haydon DT (2001) Population biology of multihost pathogens. Science 292:1109–1111

    Article  CAS  PubMed  Google Scholar 

  • Wyse DL, Meggitt WF, Penner D (1976) Effect of herbicides on the development of root rot on navy bean. Weed Sci 24:11–15

    CAS  Google Scholar 

  • Wyss GS, Müller-Schärer H (2001) Effects of selected herbicides on the germination and infection process of Puccinia lagenophora, a biocontrol pathogen of Senecio vulgaris. Biol Control 20:160–166

    Article  CAS  Google Scholar 

  • Wyszkowska J, Tomkiel M, Baćmaga M, Borowik A, Kucharski J (2016) Response of microorganisms and enzymes to soil contamination with a mixture of pethoxamid terbuthylazine. Environ Earth Sci 75:1285. https://doi.org/10.1007/s12665-016-6092-5

    Article  CAS  Google Scholar 

  • Xiao CL (2006) Postharvest fruit rots in d’Anjou pears caused by Botrytis cinerea, Potebniamyces pyri, and Sphaeropsis pyriputrescens. Plant Health Prog. https://doi.org/10.1094/PHP-2006-0905-01-DG

    Article  Google Scholar 

  • Yadav JS, Reddy CA (1993) Mineralization of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium. Appl Environ Microbiol 59:2904–2908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T (2006) Informac¸ ões Agronomicas 116. IPNI-International Plant Nutrition Institute, Piracicaba-SP, Brazil. http://www.ipni.org.br/ppiweb/pbrazil.nsf/$webindex/article=93F35608032570B5004E419AD0187284!opendocument

  • Yamanaka T (1983) Effect of paraquat on growth of Nitrosomonas europaea and Nitrobacter agilis. Plant Cell Physiol 24:1349–1352

    Google Scholar 

  • Yarnia M, Rezaei F (2006) Evaluation of allelopathical effects of Chenopodium album, Amaranthus retroflexus, and Cynodon dactylon on germination and seedling growth of rapessed. In: Nezamabadi N (ed) Proceedings of the 17th Iranian plant protection congress, vol III, Weeds, 2–5 Sept 2006, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, p 16

    Google Scholar 

  • Yasari E, Esmaeli A, Pidashti AM, Mozafari S (2008) Azotobacter and Azospirillum inoculants as biofertilizers in canola (Brassica napus L.) cultivation. Asian J Plant Sci 7:490–494. https://doi.org/10.3923/ajps.2008.490.494

    Article  Google Scholar 

  • Yoshida S, Maruyama S, Nozaki H, Shirasu K (2010) Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328:1128. https://doi.org/10.1126/science.1187145

    Article  CAS  PubMed  Google Scholar 

  • Yotsova EK, Stefanov MA, Dobrikova AG, Apostolova EL (2017) Different sensitivities of photosystem II in green algae and cyanobacteria to phenylurea and phenol-type herbicides: effect on electron donor side. Z Naturforsch C 72:315. https://doi.org/10.1515/znc-2016-0089

    Article  CAS  PubMed  Google Scholar 

  • Yu SM, Templeton GE, Wolf DC (1988) Trifluralin concentration and the growth of Fusarium solani f. sp. cucurvitae in liquid medium and soil. Soil Biol Biochem 20:607–612

    Google Scholar 

  • Yueh LY, Hensley DL (1993) Pesticide effect on acetylene reduction and nodulation by soybean and lima bean. J Am Soc Hortic Sci 118:73–76

    Google Scholar 

  • Zaid AM, Mayouf M, Said YF (2014) The effect of pre-emergent herbicides on soil microflora and N-fixing bacteria in pea field. Int J Sci: Basic and Appl Res 15:131–138

    Google Scholar 

  • Zaller JG, Heigl F, Ruess L, Grabmaier A (2014) Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Sci Rep 4:5634. http://dx.doi.org/5610.1038/srep05634

  • Zhu X, Williamson PR (2004) Role of laccases in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 5:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Pakdaman Sardrood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pakdaman Sardrood, B., Mohammadi Goltapeh, E. (2018). Weeds, Herbicides and Plant Disease Management. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews 31. Sustainable Agriculture Reviews, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-94232-2_3

Download citation

Publish with us

Policies and ethics