Skip to main content

Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count

  • Chapter
  • First Online:
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation

Abstract

This chapter gives readers fundamental understandings of various nonlinear acoustical techniques. It briefly describes the nonlinear techniques that are popular today such as higher harmonic generation, subharmonic generation, nonlinear resonant acoustic spectroscopy, vibro-acoustics, wave modulation between two wave frequencies—pumping and probing frequencies—and sideband generation. Some examples are provided showing the applications of these techniques in nondestructive evaluation (NDE) of materials and structures. The difficulties associated with various nonlinear techniques and current challenges encountered by the scientists and engineers in implementing nonlinear guided wave-based techniques are discussed. Recent development (within last 5 years) of a new promising nonlinear technique called sideband peak count (or SPC) for NDE is also discussed. SPC overcomes many shortcomings of the existing frequency modulation techniques. The objective of this chapter is to present the readers, in simple words, a broad overview of nonlinear acoustical techniques starting with the fundamental equations of mechanics. This presentation does not go into great depth of every available technique but provides sufficient basic knowledge and exposure to the new developments in this field, such as SPC. SPC is described in detail in Sect. 1.10.2. Interested readers can read this section without going through the detailed derivations of the earlier sections and can still understand this new technique. Other techniques are discussed in greater detail in the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Kundu, Chapter 1: Mechanics of elastic waves and ultrasonic NDE, in Ultrasonic and electromagnetic NDE for structure and material characterization – engineering and biomedical applications, ed. by T. Kundu, (CRC Press, Taylor and Francis, Boca Raton, 2012), pp. 1–108

    Google Scholar 

  2. L.D. Landau, E.M. Lifshitz, Theory of elasticity (Oxford University Press, Oxford, 1956)

    MATH  Google Scholar 

  3. Z.A. Goldberg, On the propagation of plane waves of finite amplitude. Sov. Phys. (Acoustics) 2, 346–352 (1956)

    Google Scholar 

  4. A.N. Norris (1998), Finite-amplitude waves in solids, in Nonlinear acoustics. M. F. Hamilton and D T. Blackstocks, Academic press, New York, pp. 267-269

    Google Scholar 

  5. J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, S487–S490 (2001)

    Article  Google Scholar 

  6. P.B. Nagy, Fatigue damage assesstment by nonlinear ultrasonic materials characterization. Ultrasonics 36, 375–381 (1998)

    Article  Google Scholar 

  7. K.Y. Jhang, Applications of nonlinear ultrasonics to the NDE of material degradation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(3), 540–548 (2000)

    Article  Google Scholar 

  8. W. Li, Y. Cho, J.D. Achenbach, Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater. Struct. 21(8), 085019 (2012)

    Article  Google Scholar 

  9. W. Li, Y. Cho, S. Hyun, Characteristics of ultrasonic nonlinearity by thermal fatigue. Int. J. Precis. Eng. Manuf. 13(6), 935–940 (2012)

    Article  Google Scholar 

  10. W. Li, Y. Cho, J.D. Achenbach, Assessment of heat treated Inconel X-750 alloy by nonlinear ultrasonics. Exp. Mech. 53(5), 775–781 (2013)

    Article  Google Scholar 

  11. J.D. Achenbach, Wave Propagation in Elastic Solids (North-Holland Preess, Amsterdam, 1973)

    MATH  Google Scholar 

  12. W. Li, Y. Cho, Combination of nonlinear ultrasonics and guided wave tomography for imaging the micro-defects. Ultrasonics 65, 87–95 (2016)

    Article  Google Scholar 

  13. G. Shui, J.–.Y. Kim, J. Qu, Y.S. Wang, L.J. Jacobs, A new technique for measuring the acoustic nonlinearity of materials using Rayleigh waves. NDT&E Int. 41(5), 326–329 (2008)

    Article  Google Scholar 

  14. Y. Shui, I.Y. Solodov, Nonlinear properties of Rayleigh and Stoneley waves in solids. J. Appl. Phys. 64(11), 6155–6165 (1988)

    Article  Google Scholar 

  15. J. Herrmannn, J. Kim, L.J. Jacobs, J. Qu, Assessment of material damage in a nickel-based superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 99, 124913 (2006)

    Article  Google Scholar 

  16. B.A. Auld, Acoustic fields and waves in solids, Vols. I and Vols. II (Wiley, London, 1990)

    Google Scholar 

  17. W.J.N. de Lima, Harmonic Generation in Isotropic Elastic Waveguides., Ph.D. Dissertation (The University of Texas at Austin, Austin, 2000)

    Google Scholar 

  18. W.J.N. de Lima, M.F. Hamilton, Finite amplitude waves in isotropic elastic plates. J. Sound Vib. 265(4), 819–839 (2003)

    Article  Google Scholar 

  19. M. Deng, Analysis of second harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94(6), 4152–4159 (2003)

    Article  Google Scholar 

  20. W. Li, Y. Cho, Thermal fatigue damage assessment in an isotropic pipe using nonlinear ultrasonic guided waves. Exp. Mech. 54(8), 1309–1318 (2014)

    Article  Google Scholar 

  21. W.J.N. de Lima, M.F. Hamilton, Finite amplitude waves in isotropic elastic waveguides with arbitrary constant cross-sectional area. Wave Motion 41(1), 1–11 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Matsuda, S. Biwa, Phase and group velocity matching for cumulative harmonic generation in Lamb waves. J. Appl. Phys. 109(9), 094903 (2011)

    Article  Google Scholar 

  23. T.R. Hay, J.L. Rose, Flexible PVDF comb transducers for excitation of axi-symmetric guided waves in pipe. Sens. Actuator A Phys. 100, 18–23 (2002)

    Article  Google Scholar 

  24. K.E.-A. Van Den Abeele, P.A. Johnson, R.A. Guyer, K.R. McCalld, On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation. J. Acoust. Soc. Am. 101(4), 1885–1898 (1997)

    Article  Google Scholar 

  25. L.D. Landau, E.M. Lifshitz, Theory of elasticity (Oxford University Press, Oxford, 1970)

    MATH  Google Scholar 

  26. A. Hikata, C. Elbaum, Generation of ultrasonic second and third harmonics due to dislocations. Phys. Rev. 144(2), 469–477 (1966)

    Article  Google Scholar 

  27. K.E.–.A. Van Den Abeele, Elastic pulsed wave propagation in media with second- or higher-order nonlinearity. Part I. Theoretical framework. J. Acoust. Soc. Am. 99, 3334–3345 (1996)

    Article  Google Scholar 

  28. V.E. Nazarov, L.A. Ostrovsky, A.M. Sutin, Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Inter. 50(1), 65–73 (1988)

    Article  Google Scholar 

  29. Y. Zheng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characterization: A review. Can. J. Phys. 77, 927–967 (1999)

    Article  Google Scholar 

  30. C. Pecorari, I. Solodov, Nonclassical nonlinear dynamics of solid surfaces in partial contact for NDE applications, in Universality of nonclassical nonlinearity. ed. by P. P. Delsanto, (Springer, Berlin, 2006), pp. 309–326

    Chapter  Google Scholar 

  31. A. Klepka, Nonlinear acoustics. in Advanced structural damage detection: from theory to engineering applications. ed. by T. Stepinski, T. Uhl, W. Staszewski, (Wiley; Hoboken, 2013), pp. 73–107

    Chapter  Google Scholar 

  32. S. Biwa, S. Nakajima, N. Ohno, On the acoustic nonlinearity of solid-solid contact with pressure-dependent Interface stiffness. J. Appl. Mech. 71(4), 508–515 (2004)

    Article  MATH  Google Scholar 

  33. J.-Y. Kim, A. Baltazar, J.W. Hu, S.I. Rokhlin, Hysteretic linear and nonlinear acoustic responses from pressed interfaces. Int. J. Solids Struct. 43(21), 6436–6452 (2006)

    Article  MATH  Google Scholar 

  34. D. Yan, B.W. Drinkwater, S. Neild, Measurement of the ultrasonic nonlinearity of kissing bonds in adhesive joints. NDT&E Int. 42(5), 459–466 (2009)

    Article  Google Scholar 

  35. K.H. Matlack, J.–.Y. Kim, L.J. Jacobs, J. Qu, Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestruct. Eval. 34(1), 273 (2015)

    Article  Google Scholar 

  36. G.D. Meegan, P.A. Johnson, R.A. Guyer, K.R. McCall, Observations of nonlinear elastic wave behavior in sandstone. J. Acoust. Soc. Am. 94(6), 3387–3391 (1993)

    Article  Google Scholar 

  37. A.A. Shah, Y. Ribakov, S. Hirose, Nondestructive evaluation of damaged concrete using nonlinear ultrasonics. Mater. Des. 30(3), 775–782 (2009)

    Article  Google Scholar 

  38. J.D. Stauffer, C.B. Woodward, K.R. White, Nonlinear ultrasonic testing with resonant and pulse velocity parameters for early damage in concrete. ACI Mater. J. 102(2), 4–7 (2005)

    Google Scholar 

  39. M. Amura, M. Meo, F. Amerini, Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter. J. Acoust. Soc. Am. 130(4), 1829–1837 (2011)

    Article  Google Scholar 

  40. O. Buck, W.L. Morris, J.M. Richardson, Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Appl. Phys. Lett. 33(5), 371 (1978)

    Article  Google Scholar 

  41. K.-Y. Jhang, K.–.C. Kim, Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics 37(1), 39–44 (1999)

    Article  Google Scholar 

  42. A. Romer, J.–.Y. Kim, J. Qu, L.J. Jacobs, The second harmonic generation in reflection mode: An analytical, numerical and experimental study. J. Nondestruct. Eval. 35(1), 6 (2016)

    Article  Google Scholar 

  43. S. Thiele, J.–.Y. Kim, J. Qu, L.J. Jacobs, Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity. Ultrasonics 54, 1470–1475 (2014)

    Article  Google Scholar 

  44. C. Bermes, J.–.Y. Kim, J. Qu, L.J. Jacobs, Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90(2), 1–4 (2007)

    Article  Google Scholar 

  45. A.J. Hillis, S.A. Neild, B.W. Drinkwater, P.D. Wilcox, Global crack detection using bispectral analysis. Proc. Royal Soc. A 462, 1515–1530 (2006)

    Article  MATH  Google Scholar 

  46. C.L.E. Bruno, A.S. Gliozzi, M. Scalerandi, P. Antonaci, Analysis of elastic nonlinearity using the scaling subtraction method. Phys. Rev. B 79(6), 064108 (2009)

    Article  Google Scholar 

  47. P. Antonaci, C.L.E. Bruno, A.S. Gliozzi, M. Scalerandi, Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods. Cem. Concr. Res. 40(7), 1106–1113 (2010)

    Article  Google Scholar 

  48. M. Scalerandi, M. Griffa, P. Antonaci, M. Wyrzykowski, P. Lura, Nonlinear elastic response of thermally damaged consolidated granular media. J. Appl. Phys. 113(15), 154902 (2013)

    Article  Google Scholar 

  49. P. Antonaci, A. Formia, A.S. Gliozzi, M. Scalerandi, J.M. Tulliani, Diagnostic application of nonlinear ultrasonics to characterize degradation by expansive salts in masonry systems. NDT&E Int. 55, 57–63 (2013)

    Article  Google Scholar 

  50. M. Scalerandi, A.S. Gliozzi, D. Olivero, Discrimination between cracks and recrystallization in steel using nonlinear techniques. J. Nondestruct. Eval. 33(2), 269–278 (2014)

    Article  Google Scholar 

  51. D.S. Hughes, J.L. Kelly, Second-order elastic deformation of solids. Phys. Rev. 92(5), 1145–1149 (1953)

    Article  MATH  Google Scholar 

  52. L. Adler, P.B. Nagy, Second order nonlinearities and their application in NDE. in Review of progress in quantitative nondestructive evaluation, ed. by D.O. Thompson, D.E. Chimenti, (Plenum Press, New York, 1991), Vol. 10B, pp. 1813–1820

    Chapter  Google Scholar 

  53. F.D. Murnaghan, Finite deformation of an elastic solid (Wiley, Hoboken, 1951)

    MATH  Google Scholar 

  54. R.H. Bergman, R.A. Shahbender, Effect of statically applied stresses on the velocity of propagation of ultrasonic waves. J. Appl. Phys. 29(12), 1736–1738 (1958)

    Article  Google Scholar 

  55. P.A. Johnson, P.N.J. Rasolofosaon, Nonlinear elasticity and stress-induced anisotropy in rock. J. Geophys. Res. 101, 3113–3124 (1996)

    Article  Google Scholar 

  56. P.A. Johnson, P.N.J. Rasolofosaon, Resonance and elastic nonlinear phenomena in rock. J. Geophys. Res. 101(B5), 553–564 (1996)

    Article  Google Scholar 

  57. V. Bucur, P.N.J. Rasolofosaon, Dynamic elastic anisotropy and nonlinearity in wood and rock. Ultrasonics 36(7), 813–824 (1998)

    Article  Google Scholar 

  58. C. Payan, V. Garnier, J. Moysan, P.A. Johnson, Determination of third order elastic constants in a complex solid applying coda wave interferometry. Appl. Phys. Lett. 94(1), 011904 (2009)

    Article  Google Scholar 

  59. W.L. Morris, O. Buck, R.V. Inman, Acoustic harmonic generation due to fatigue damage in high-strength aluminum. J. Appl. Phys. 50(11), 6737–6741 (1979)

    Article  Google Scholar 

  60. P.B. Nagy, P. McGowan, L. Adler, Acoustic nonlinearities in adhesive joints, in Review of progress in quantitative nondestructive evaluation, D.O. Thompson, D.E. Chimenti, (Plenum Press, New York, 1990), Vol. 9, pp. 1685–1692

    Chapter  Google Scholar 

  61. P. Shokouhi, A. Zoëga, H. Wiggenhauser, G. Fischer, Surface wave velocity-stress relationship in uniaxially loaded concrete. ACI Mater. J. 109(2), 141–148 (2012)

    Google Scholar 

  62. P. Fröjd, P. Ulriksen, Amplitude and phase measurements of continuous diffuse fields for structural health monitoring of concrete structures. NDT&E Int. 77, 35–41 (2016)

    Article  Google Scholar 

  63. R. Snieder, A. Gret, H. Douma, J. Scales, Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science (New York, N.Y.) 295(5563), 2253–2255 (2002)

    Article  Google Scholar 

  64. E. Larose, S. Hall, Monitoring stress related velocity variation in concrete with a 2x10(−5) relative resolution using diffuse ultrasound. J. Acoust. Soc. Am. 125(4), 2641 (2009)

    Article  Google Scholar 

  65. D.P. Schurr, J.–.Y. Kim, K.G. Sabra, L.J. Jacobs, Damage detection in concrete using coda wave interferometry. NDT&E Int 44(8), 728–735 (2011)

    Article  Google Scholar 

  66. K.E.-A. Van Den Abeele, J. Carmeliet, J.A. Ten Cate, P.A. Johnson, Nonlinear Elastic Wave Spectroscopy (NEWS) techniques to discern material damage, part II: Single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12(1), 31–42 (2000)

    Article  Google Scholar 

  67. K.E.-A. Van Den Abeele, P.A. Johnson, A. Sutin, Nonlinear Elastic Wave Spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear Wave Modulation Spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17–30 (2000)

    Article  Google Scholar 

  68. L.K. Zarembo, V.A. Krasil’nikox, I.E. Shkol’nik, Nonlinear acoustics in a problem of diagnosing the strength of solids. Problemy Prochnosti 21(11), 86–92 (1989)

    Google Scholar 

  69. R.A. Guyer, P.A. Johnson, Nonlinear mesoscopic elasticity: Evidence for a new class of materials. Phys. Today 52(4), 30–36 (1999)

    Article  Google Scholar 

  70. R.A. Guyer, K.R. McCall, G.N. Boitnott, Hysteresis, discrete memory, and nonlinear wave propagation in rock. Phys. Rev. Lett. 74(17), 3491–3494 (1995)

    Article  Google Scholar 

  71. T.A. Read, The internal friction of single metal crystals. Phys. Rev. 58, 371–380 (1940)

    Article  Google Scholar 

  72. C. Campos-Pozuelo, C. Vanhille, J.A. Gallego-Juárez, Comparative study of the nonlinear behavior of fatigued and intact samples of metallic alloys. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 175–184 (2006)

    Article  Google Scholar 

  73. R.A. Guyer, K.R. McCall, K. Van Den Abeele, Slow elastic dynamics in a resonant bar of rock. Geophys. Res. Lett. 25(10), 1585–1588 (1998)

    Article  Google Scholar 

  74. V.E. Nazarov, A.V. Radostin, L.A. Ostrovsky, I.A. Soustova, Wave processes in media with hysteretic nonlinearity: Part 2. Acoust. Phys. 49(4), 444–448 (2003)

    Article  Google Scholar 

  75. C. Pecorari, D.A. Mendelsohn, Forced nonlinear vibrations of a one-dimensional bar with arbitrary distributions of hysteretic damage. J. Nondestruct. Eval. 33(2), 239–251 (2014)

    Article  Google Scholar 

  76. P.A. Johnson, A. Sutin, Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117(1), 124–130 (2005)

    Article  Google Scholar 

  77. K.E.–.A. Van Den Abeele, A. Sutin, J. Carmeliet, P.A. Johnson, Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT&E Int. 34(4), 239–248 (2001)

    Article  Google Scholar 

  78. K.E. Van Den Abeele, K. Van de Velde, J. Carmeliet, Inferring the degradation of pultruded composites from dynamic nonlinear resonance measurements. Polym. Compos. 22(4), 555–567 (2001)

    Article  Google Scholar 

  79. T.W. Darling, J.A. Ten Cate, D.W. Brown, B. Clausen, S.C. Vogel, Neutron diffraction study of the contribution of grain contacts to nonlinear stress-strain behavior. Geophys. Res. Lett. 31(16), 31–34 (2004)

    Article  Google Scholar 

  80. V.E. Nazarov, A.V. Radostin, Nonlinear acoustic waves in micro-inhomogeneous solids (Wiley, Hoboken, 2015)

    Google Scholar 

  81. M. Bentahar, H. El Agra, R. El Guerjouma, M. Griffa, M. Scalerandi, Hysteretic elasticity in damaged concrete: Quantitative analysis of slow and fast dynamics. Phys. Rev. B 73(1), 014116 (2006)

    Article  Google Scholar 

  82. N. Favrie, B. Lombard, C. Payan, Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations. Wave Motion 56, 221–238 (2015)

    Article  MathSciNet  Google Scholar 

  83. J.A. Ten Cate, Slow dynamics of earth materials: An experimental overview. Pure Appl. Geophys. 168(12), 2211–2219 (2011)

    Article  Google Scholar 

  84. D. Pasqualini, J.A. Ten Cate, S. Habib, D. Higdon, P.A. Johnson, Nonequilibrium and nonlinear dynamics in Berea and Fontainebleau sandstones: Low-strain regime. J. Geophys. Res. 112(B1), B01204 (2007)

    Article  Google Scholar 

  85. C. Pecorari, A constitutive relationship for mechanical hysteresis of sandstone materials. Proc. Royal Soc. London A Math. Phys. Eng. Sci. 471(2184), 20150369 (2015)

    Article  Google Scholar 

  86. J. Rivière, G. Renaud, R.A. Guyer, P.A. Johnson, Pump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories. J. Appl. Phys. 114(5), 054905 (2013)

    Article  Google Scholar 

  87. C. Payan, V. Garnier, J. Moysan, P.A. Johnson, Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 121(4), EL125–EL130 (2007)

    Article  Google Scholar 

  88. J. Chen, J.-Y. Kim, K.E. Kurtis, L.J. Jacobs, Rapid evaluation of alkali-silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40(6), 914–923 (2010)

    Article  Google Scholar 

  89. S.-J. Park, G.-K. Park, H.J. Yim, H.-G. Kwak, Evaluation of residual tensile strength of fire-damaged concrete using a non-linear resonance vibration method. Mag. Concr. Res. 67(5), 235–246 (2015)

    Article  Google Scholar 

  90. J.N. Eiras, T. Kundu, J.S. Popovics, J. Monzó, L. Soriano, J. Payá, Evaluation of frost damage in cement-based materials by a nonlinear elastic wave technique, in Health Monitoring of Structural and Biological Systems VII, ed. by T. Kundu, SPIE Proceedings Vol. 9064, SPIE's 2014 Annual international symposium on smart structures and nondestructive evaluation, (San Diego, California, March 10–13, 2014)

    Google Scholar 

  91. J.N. Eiras, T. Kundu, J. Popovics, J. Monzo, J. Paya, Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection. J. Acoust. Soc. Am. Exp. Lett. 135(2), EL82–EL87 (2014)

    Article  Google Scholar 

  92. A. Novak, M. Bentahar, V. Tournat, R. El Guerjouma, L. Simon, Nonlinear acoustic characterization of micro-damaged materials through higher harmonic resonance analysis. NDT&E Int. 45(1), 1–8 (2012)

    Article  Google Scholar 

  93. V.E. Gusev, W. Lauriks, J. Thoen, Dispersion of nonlinearity, nonlinear dispersion, and absorption of sound in micro-inhomogeneous materials. J. Acoust. Soc. Am. 103(6), 3216–3226 (1998)

    Article  Google Scholar 

  94. K.E.–.A. Van Den Abeele, P.Y. Le Bas, B. Van Damme, T. Katkowski, Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study. J. Acoust. Soc. Am. 126(3), 963–972 (2009)

    Article  Google Scholar 

  95. B. Van Damme, K.E.–.A. Van Den Abeele, The application of nonlinear reverberation spectroscopy for the detection of localized fatigue damage. J. Nondestruct. Eval. 33(2), 263–268 (2014)

    Google Scholar 

  96. U. Dahlén, N. Ryden, A. Jakobsson, Damage identification in concrete using impact non-linear reverberation spectroscopy. NDT&E Int. 75, 15–25 (2015)

    Article  Google Scholar 

  97. A.M. Sutin, V.E. Nazarov, Nonlinear acoustic methods of crack diagnostics. Radiophys. Quant. Electron. 38(3), 109–120 (1995)

    Google Scholar 

  98. A.S. Korotkov, M.M. Slavinskii, A.M. Sutin, Variations of acoustic nonlinear parameters with the concentration of the defects in steel. Acoust. Phys. 40(1), 71–74 (1994)

    Google Scholar 

  99. V.Y. Zaitsev, A.M. Sutin, I.Y. Belyaeva, V.E. Nazarov, Nonlinear interaction of acoustical waves due to cracks and its possible usage for cracks detection. J. Vib. Control. 1(3), 335–344 (1995)

    Google Scholar 

  100. I.Y. Solodov, B.A. Korshak, Instability, chaos, and “memory” in acoustic-wave-crack interaction. Phys. Rev. Lett. 88(1), 014303 (2002)

    Article  Google Scholar 

  101. D.M. Donskoy, A.M. Sutin, Vibro-acoustic modulation nondestructive evaluation technique. J. Intell. Mater. Syst. Struct. 9, 765–771 (1998)

    Article  Google Scholar 

  102. P. Duffour, M. Morbidini, P. Cawley, A study of the vibro-acoustic modulation technique for the detection of cracks in metals. J. Acoust. Soc. Am. 119(3), 1463 (2006)

    Article  Google Scholar 

  103. A.E. Ekimov, I.N. Didenkulov, V.V. Kazakov, Modulation of torsional waves in a rod with a crack. J. Acoust. Soc. Am. 106(3), 1289 (1999)

    Article  Google Scholar 

  104. V.Y. Zaitsev, L.A. Matveev, A.L. Matveyev, On the ultimate sensitivity of nonlinear-modulation method of crack detection. NDT&E Int. 42(7), 622–629 (2009)

    Article  Google Scholar 

  105. V.Y. Zaitsev, L.A. Matveev, A.L. Matveyev, Elastic-wave modulation approach to crack detection: Comparison of conventional modulation and higher-order interactions. NDT&E Int. 44(1), 21–31 (2011)

    Article  Google Scholar 

  106. D. Donskoy, A. Sutin, A. Ekimov, Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT&E Int. 34(4), 231–238 (2001)

    Article  Google Scholar 

  107. G. Renaud, S. Callé, J.P. Remenieras, M. Defontaine, Exploration of trabecular bone nonlinear elasticity using time of flight modulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(7), 1497–1507 (2008)

    Article  Google Scholar 

  108. G. Renaud, S. Callé, M. Defontaine, Remote dynamic acoustoelastic testing: Elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression. Appl. Phys. Lett. 94(011905), 1–4 (2009)

    Google Scholar 

  109. G. Renaud, M. Talmant, S. Callé, M. Defontaine, P. Laugier, Nonlinear elastodynamics in micro-inhomogeneous solids observed by head-wave based dynamic acoustoelastic testing. J. Acoust. Soc. Am. 130(6), 3583 (2011)

    Article  Google Scholar 

  110. S. Haupert, J. Rivière, B. Anderson, Y. Ohara, T.J. Ulrich, P. Johnson, Optimized dynamic acousto-elasticity applied to fatigue damage and stress corrosion cracking. J. Nondestruct. Eval. 33(2), 226–238 (2014)

    Article  Google Scholar 

  111. G. Renaud, J. Rivière, C. Larmat, J.T. Rutledge, R.C. Lee, R.A. Guyer, K. Stokoe, P.A. Johnson, In situ characterization of shallow elastic nonlinear parameters with dynamic acousto-elastic testing. J. Geophys. Res. Solid Earth 119(9), 6907–6923 (2014)

    Article  Google Scholar 

  112. D. Bui, S.A. Kodjo, P. Rivard, B. Fournier, Evaluation of concrete distributed cracks by ultrasonic travel time shift under an external mechanical perturbation: Study of indirect and semi-direct transmission configurations. J. Nondestruct. Eval. 32(1), 25–36 (2013)

    Article  Google Scholar 

  113. F. Moradi-Marani, S.A. Kodjo, P. Rivard, C.-P. Lamarche, Application of the mechanical perturbation produced by traffic as a new approach of nonlinear acoustic technique for detecting microcracks in the concrete: A laboratory simulation, in AIP Conference proceedings. 1430, (2012), pp. 1493–1499

    Google Scholar 

  114. F. Moradi-Marani, S.A. Kodjo, P. Rivard, C.-P. Lamarch, Nonlinear acoustic technique of time shift for evaluation of alkali-silica reaction damage in concrete structures. ACI Mater. J. 111(5), 581–592 (2014)

    Google Scholar 

  115. N. Tremblay, E. Larose, V. Rossetto, Probing slow dynamics of consolidated granular multicomposite materials by diffuse acoustic wave spectroscopy. J. Acoust. Soc. Am. 127(3), 1239–1243 (2010)

    Article  Google Scholar 

  116. E. Larose, N. Tremblay, C. Payan, V. Garnier, V. Rossetto, Ultrasonic slow dynamics to probe concrete aging and damage, in Review of progress in quantitative nondestructive evaluation, 32, (American Institute of Physics Proceedings 1511, 2013), pp. 1317–1324

    Google Scholar 

  117. B. Hilloulin, O. Abraham, A. Loukili, O. Durand, V. Tournat, Small crack detection in cementitious materials using nonlinear coda wave modulation. NDT&E Int. 68, 98–104 (2014)

    Article  Google Scholar 

  118. Y. Ohara, H. Endo, T. Mihara, K. Yamanaka, Ultrasonic measurement of closed stress corrosion crack depth using subharmonic phased array. Jpn. J. Appl. Phys. 48, 07GD01 (2009)

    Google Scholar 

  119. M. Liu, J. Kim, L.J. Jacobs, J. Qu, Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminium plates-feasibility of measuring residual stress. NDT&E Int. 44(1), 67–74 (2011)

    Article  Google Scholar 

  120. A.J. Croxford, P.D. Wilcox, B.W. Drinkwater, P.B. Nagy, The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 126(5), 117–122 (2009)

    Article  Google Scholar 

  121. A. Demčenko, R. Akkerman, P.B. Nagy, Non-collinear wave mixing for nonlinear ultrasonic detection of physical ageing in PVC. NDT&E Int. 49(1), 34–39 (2012)

    Article  Google Scholar 

  122. N.C. Yoder, D.E. Adams, Vibro-acoustic modulation using a swept probing signal for robust crack detection. Struct. Health Monit. 9, 257–267 (2010)

    Article  Google Scholar 

  123. H. Sohn, H.J. Lim, M.P. DeSimio, K. Brown, M. Derisso, Nonlinear ultrasonic wave modulation for fatigue crack detection. J. Sound Vib. 333, 1473–1484 (2013)

    Article  Google Scholar 

  124. X.J. Chen, J.–.Y. Kim, K.E. Kurtis, J. Qu, C.W. Shen, L.J. Jacobs, Characterization of progressive microcracking in Portland cement mortar using nonlinear ultrasonics. NDT&E Int. 41, 112–118 (2008)

    Article  Google Scholar 

  125. A. Klepka, W.J. Staszewski, R.B. Jenal, M. Szwedo, J. Iwaniec, Nonlinear acoustics for fatigue crack detection – Experimental investigations of vibro-acoustic wave modulations. Struct. Health Monit. 11, 197–211 (2012)

    Article  Google Scholar 

  126. C. Zhou, M. Hong, Z. Su, Q. Wang, L. Cheng, Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network. Smart Mater. Struct. 22, 015018 (2013)

    Article  Google Scholar 

  127. J.N. Eiras, T. Kundu, M. Bonilla, J. Payá, Nondestructive monitoring of ageing of alkali resistant glass fiber reinforced cement (GRC). J. Nondestruct. Eval. 32(3), 300–314 (2013)

    Article  Google Scholar 

  128. M.H. Hafezi, R. Alebrahim, T. Kundu, Peri-ultrasound for modeling linear and nonlinear ultrasonic response. Ultrasonics 80, 47–57 (2017)

    Article  Google Scholar 

  129. P. Liu, H. Sohn, T. Kundu, S. Yang, Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS). NDT&E Int. 66, 106–116 (2014)

    Article  Google Scholar 

  130. P. Liu, H. Sohn, T. Kundu, Fatigue crack localization using laser nonlinear wave modulation spectroscopy (LNWMS). J. Korean Soc. Nondestruct. Test. 34(6), 419–427 (2014)

    Article  Google Scholar 

  131. Y.K. An, B. Park, H. Sohn, Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate. Smart Mater. Struct. 22, 025022 (2013)

    Article  Google Scholar 

  132. S. Yashiro, J. Takatsubo, H. Miyauchi, N. Toyama, A novel technique for visualizing ultrasonic waves in general solid media by pulsed laser scan. NDT&E Int. 41, 137–144 (2008)

    Article  Google Scholar 

  133. J.N. Caron, G.P. DiComo, S. Nikitin, Generation of ultrasound in materials using continuous-wave lasers. Opt. Lett. 37, 830–832 (2012)

    Article  Google Scholar 

  134. H. Sohn, D. Dutta, J.Y. Yang, M.P. Desimo, S.E. Olson, E.D. Swenson, Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer. Smart Mater. Struct. 20, 045017 (2011)

    Article  Google Scholar 

  135. T.E. Michaels, J.E. Michaels, M. Ruzzene, Frequency–wavenumber domain analysis of guided wavefields. Ultrasonics 51, 452–466 (2011)

    Article  Google Scholar 

  136. C.B. Scruby, L.E. Drain, Laser ultrasonics: Techniques and Applications (Taylor and Francis, London, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tribikram Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, T., Eiras, J.N., Li, W., Liu, P., Sohn, H., Payá, J. (2019). Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count. In: Kundu, T. (eds) Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-94476-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94476-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94474-6

  • Online ISBN: 978-3-319-94476-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics