Skip to main content

An Asymmetric Universe from Inflation

  • Chapter
  • First Online:
Cosmological Implications of Quantum Anomalies

Part of the book series: Springer Theses ((Springer Theses))

  • 355 Accesses

Abstract

It is generally considered that the generation of the observed matter-antimatter asymmetry must have occurred after the inflationary epoch, as otherwise it would have been diluted away by the rapid spacetime expansion. In order to produce a significant asymmetry during inflation, the production rate of baryonic charge must exceed its dilution rate. Despite this challenge, it has been found that inflationary dynamics may be able to support such a scenario. By utilising the observation that, if a large baryonic charge density is created due to small-scale quantum fluctuations, it will typically be stretched out over large scales due to inflation. In the last decade mechanisms have been proposed to explore this idea, but with varying success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.D. Barrie, A. Kobakhidze, Inflationary baryogenesis in a model with gauged baryon number. JHEP 09, 163 (2014). https://doi.org/10.1007/JHEP09(2014)163

    Article  ADS  Google Scholar 

  2. N.D. Barrie, A. Kobakhidze, Generating luminous and dark matter during inflation. Mod. Phys. Lett. A 32(14), 1750087 (2017). https://doi.org/10.1142/S0217732317500870

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Progress in electroweak baryogenesis. Ann. Rev. Nucl. Part. Sci. 43, 27–70 (1993). https://doi.org/10.1146/annurev.ns.43.120193.000331

  4. C.L. Bennett et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. 208, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/20

    Article  ADS  Google Scholar 

  5. P.A.R. Ade et al., Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014). https://doi.org/10.1051/0004-6361/201321529

    Article  Google Scholar 

  6. P.A.R. Ade et al., Planck 2015 results XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830

    Article  Google Scholar 

  7. J. Beringer et al., Review of Particle Physics (RPP). Phys. Rev. D 86, 010001 (2012). https://doi.org/10.1103/PhysRevD.86.010001

    Article  ADS  Google Scholar 

  8. G. Steigman, Primordial nucleosynthesis in the precision cosmology era. Ann. Rev. Nucl. Part. Sci. 57, 463–491 (2007). https://doi.org/10.1146/annurev.nucl.56.080805.140437

    Article  ADS  Google Scholar 

  9. V. Simha, G. Steigman, Constraining the early-universe baryon density and expansion rate. JCAP 0806, 016 (2008). https://doi.org/10.1088/1475-7516/2008/06/016

    Article  ADS  Google Scholar 

  10. G. Steigman, Primordial nucleosynthesis: the predicted and observed abundances and their consequences. PoS, NICXI:001 (2010)

    Google Scholar 

  11. B.D. Fields, P. Molaro, S. Sarkar, Big-Bang nucleosynthesis. Chin. Phys. C 38, 339–344 (2014)

    Google Scholar 

  12. G. Krnjaic, Can the baryon asymmetry arise from initial conditions? Phys. Rev. D 96(3), 035041 (2017). https://doi.org/10.1103/PhysRevD.96.035041

    Article  ADS  Google Scholar 

  13. A.D. Dolgov, NonGUT baryogenesis. Phys. Rep. 222, 309–386 (1992). https://doi.org/10.1016/0370-1573(92)90107-B

    Article  ADS  Google Scholar 

  14. K. Funakubo, CP violation and baryogenesis at the electroweak phase transition. Prog. Theor. Phys. 96, 475–520 (1996). https://doi.org/10.1143/PTP.96.475

    Article  ADS  Google Scholar 

  15. M. Trodden, Electroweak baryogenesis. Rev. Mod. Phys. 71, 1463–1500 (1999). https://doi.org/10.1103/RevModPhys.71.1463

    Article  ADS  Google Scholar 

  16. A. Riotto, M. Trodden, Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 49, 35–75 (1999). https://doi.org/10.1146/annurev.nucl.49.1.35

    Article  ADS  Google Scholar 

  17. M. Dine, A. Kusenko, The origin of the matter antimatter asymmetry. Rev. Mod. Phys. 76, 1 (2003). https://doi.org/10.1103/RevModPhys.76.1

    Article  ADS  Google Scholar 

  18. J.M. Cline, Baryogenesis, in Les Houches Summer School—Session 86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, France, July 31–August 25, 2006

    Google Scholar 

  19. W. Buchmuller, Baryogenesis: 40 Years Later, in Proceedings on 13th International Symposium on Particles, strings, and cosmology (PASCOS 2007), London, UK, 2–7 July 2007

    Google Scholar 

  20. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008), p 593. ISBN 9780198526827

    Google Scholar 

  21. M. Shaposhnikov, Baryogenesis. J. Phys. Conf. Ser. 171, 012005 (2009). https://doi.org/10.1088/1742-6596/171/1/012005

    Article  Google Scholar 

  22. P.F. Perez, New paradigm for baryon and lepton number violation. Phys. Rep. 597, 1–30 (2015). https://doi.org/10.1016/j.physrep.2015.09.001

  23. A.D. Dolgov, A.D. Linde, Baryon asymmetry in inflationary universe. Phys. Lett. B 116, 329 (1982). https://doi.org/10.1016/0370-2693(82)90292-1

  24. A.D. Sakharov, Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967). https://doi.org/10.1070/PU1991v034n05ABEH002497. [Usp. Fiz. Nauk 161, 61(1991)]

  25. S. Weinberg, Baryon and lepton nonconserving processes. Phys. Rev. Lett. 43, 1566–1570 (1979). https://doi.org/10.1103/PhysRevLett.43.1566

    Article  ADS  Google Scholar 

  26. P. Nath, P.F. Perez, Proton stability in grand unified theories, in strings and in branes. Phys. Rep. 441, 191–317 (2007). https://doi.org/10.1016/j.physrep.2007.02.010

  27. I. Dorsner, P.F. Perez, How long could we live? Phys. Lett. B 625, 88–95 (2005). https://doi.org/10.1016/j.physletb.2005.08.039

  28. S. Dodelson, L.M. Widrow, Baryon symmetric baryogenesis. Phys. Rev. Lett. 64, 340–343 (1990). https://doi.org/10.1103/PhysRevLett.64.340

    Article  ADS  Google Scholar 

  29. S. Dodelson, L.M. Widrow, Baryogenesis in a baryon symmetric universe. Phys. Rev. D 42, 326–342 (1990). https://doi.org/10.1103/PhysRevD.42.326

    Article  ADS  Google Scholar 

  30. V.A. Kuzmin, A Simultaneous solution to baryogenesis and dark matter problems. Phys. Part. Nucl. 29, 257–265 (1998). https://doi.org/10.1134/1.953070. [Phys. Atom. Nucl. 61,1107 (1998)]

  31. K. Petraki, R.R. Volkas, Review of asymmetric dark matter. Int. J. Mod. Phys. A 28, 1330028 (2013). https://doi.org/10.1142/S0217751X13300287

    Article  ADS  MathSciNet  Google Scholar 

  32. M.D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014). ISBN 1107034736, 9781107034730

    Google Scholar 

  33. L.H. Ryder, Quantum Field Theory. (Cambridge University Press, 1996). ISBN 9780521478144, 9781139632393, 9780521237642

    Google Scholar 

  34. T.P. Cheng, L.F. Li., Gauge Theory of Elementary Particle Physics. (Clarendon, Oxford Science Publications, Oxford, 1984), p. 536. ISBN 9780198519614

    Google Scholar 

  35. G.V. Dunne, Aspects of chern-simons theory, in Topological Aspects of Low-dimensional Systems: Proceedings, Les Houches Summer School of Theoretical Physics, Session 69: Les Houches, France, 7–31 July 1998

    Google Scholar 

  36. V.A. Rubakov, M.E. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions. Usp. Fiz. Nauk 166, 493–537 (1996). https://doi.org/10.1070/PU1996v039n05ABEH000145

    Article  Google Scholar 

  37. E.J. Weinberg, Classical solutions in quantum field theories. Ann. Rev. Nucl. Part. Sci. 42, 177–210 (1992)

    Article  ADS  Google Scholar 

  38. P.B. Arnold, L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory. Phys. Rev. D 36, 581 (1987). https://doi.org/10.1103/PhysRevD.36.581

  39. P.B. Arnold, An introduction to baryon violation in standard electroweak theory, in Testing the Standard Model - TASI-90: Theoretical Advanced Study Inst. in Elementary Particle Physics Boulder, Colorado, 3–29 June 1990, pp. 719–742

    Google Scholar 

  40. F.R. Klinkhamer, N.S. Manton, A saddle point solution in the weinberg-salam theory. Phys. Rev. D 30, 2212 (1984). https://doi.org/10.1103/PhysRevD.30.2212

  41. D. Diakonov, Instantons at work. Prog. Part. Nucl. Phys. 51, 173–222 (2003). https://doi.org/10.1016/S0146-6410(03)90014-7

    Article  ADS  Google Scholar 

  42. O. Espinosa, High-energy behavior of baryon and lepton number violating scattering amplitudes and breakdown of unitarity in the standard model. Nucl. Phys. B 343, 310–340 (1990). https://doi.org/10.1016/0550-3213(90)90473-Q

    Article  ADS  Google Scholar 

  43. M. Hellmund, J. Kripfganz, The decay of the sphalerons. Nucl. Phys. B 373, 749–760 (1992). https://doi.org/10.1016/0550-3213(92)90274-F

    Article  ADS  Google Scholar 

  44. M. Trodden, S.M. Carroll, TASI lectures: introduction to cosmology, in Proceedings, Summer School, Progress in string theory (TASI 2003), Boulder, USA (2004) pp. 703–793, 2–27 June 2003

    Google Scholar 

  45. Y. Burnier, M. Laine, M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover. JCAP 0602, 007 (2006). https://doi.org/10.1088/1475-7516/2006/02/007

    Article  ADS  Google Scholar 

  46. L. Bento, Sphaleron relaxation temperatures. JCAP 0311, 002 (2003). https://doi.org/10.1088/1475-7516/2003/11/002

    Article  ADS  Google Scholar 

  47. S. Yu. Khlebnikov, M.E. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation. Nucl. Phys. B 308, 885–912 (1988). https://doi.org/10.1016/0550-3213(88)90133-2

  48. R. Rangarajan, D.V. Nanopoulos, Inflationary baryogenesis. Phys. Rev. D 64, 063511 (2001). https://doi.org/10.1103/PhysRevD.64.063511

  49. S.H.-S. Alexander, M.E. Peskin, M.M. Sheikh-Jabbari, Leptogenesis from gravity waves in models of inflation. Phys. Rev. Lett. 96, 081301 (2006). https://doi.org/10.1103/PhysRevLett.96.081301

  50. S. Alexander, A. Marciano, D. Spergel, Chern-simons inflation and baryogenesis. JCAP 1304, 046 (2013). https://doi.org/10.1088/1475-7516/2013/04/046

    Article  ADS  MathSciNet  Google Scholar 

  51. A. Maleknejad, M. Noorbala, M.M. Sheikh-Jabbari, Inflato-natural leptogenesis: leptogenesis in chromo-natural and gauge inflations (2012), arXiv:1208.2807

  52. A. Maleknejad, Chiral gravity waves and leptogenesis in inflationary models with non-abelian gauge fields. Phys. Rev. D 90(2), 023542 (2014). https://doi.org/10.1103/PhysRevD.90.023542

    Article  ADS  Google Scholar 

  53. J. Preskill, Gauge anomalies in an effective field theory. Ann. Phys. 210, 323–379 (1991). https://doi.org/10.1016/0003-4916(91)90046-B

    Article  ADS  MathSciNet  Google Scholar 

  54. M. Ibe, S. Matsumoto, T.T. Yanagida, The GeV-scale dark matter with B-L asymmetry. Phys. Lett. B 708, 112–118 (2012). https://doi.org/10.1016/j.physletb.2012.01.032

    Article  ADS  Google Scholar 

  55. S.M. Barr, The unification and cogeneration of dark matter and baryonic matter. Phys. Rev. D 85, 013001 (2012). https://doi.org/10.1103/PhysRevD.85.013001

    Article  ADS  Google Scholar 

  56. S. Kanemura, T. Matsui, H. Sugiyama, Neutrino mass and dark matter from gauged \(U(1)_{B-L}\) breaking. Phys. Rev. D 90, 013001 (2014). https://doi.org/10.1103/PhysRevD.90.013001

    Google Scholar 

  57. Z. Chacko, Y. Cui, S. Hong, T. Okui, Hidden dark matter sector, dark radiation, and the CMB. Phys. Rev. D 92, 055033 (2015). https://doi.org/10.1103/PhysRevD.92.055033

    Article  ADS  Google Scholar 

  58. A. Alves, A. Berlin, S. Profumo, F.S. Queiroz, Dirac-fermionic dark matter in U(1)\(_{X}\) models. JHEP 10, 076 (2015). https://doi.org/10.1007/JHEP10(2015)076

    Google Scholar 

  59. N. Okada, S. Okada, \(Z^\prime \)-portal right-handed neutrino dark matter in the minimal U(1)\(_X\) extended standard model. Phys. Rev. D 95(3), 035025 (2017). https://doi.org/10.1103/PhysRevD.95.035025

    Google Scholar 

  60. W.-Z. Feng, P. Nath, Baryogenesis and dark matter in \(U(1)\) extensions. Mod. Phys. Lett. A 32, 1740005 (2017). https://doi.org/10.1142/S0217732317400053

  61. B.A. Campbell, S. Davidson, J.R. Ellis, K.A. Olive, On the baryon, lepton flavor and right-handed electron asymmetries of the universe. Phys. Lett. B 297, 118–124 (1992). https://doi.org/10.1016/0370-2693(92)91079-O

    Article  ADS  Google Scholar 

  62. M. Giovannini, M.E. Shaposhnikov, Primordial hypermagnetic fields and triangle anomaly. Phys. Rev. D 57, 2186–2206 (1998). https://doi.org/10.1103/PhysRevD.57.2186

  63. M. Giovannini, Hypermagnetic knots, Chern-Simons waves and the baryon asymmetry. Phys. Rev. D 61, 063502 (2000). https://doi.org/10.1103/PhysRevD.61.063502

    Article  ADS  Google Scholar 

  64. R. Foot, G.C. Joshi, H. Lew, Gauged baryon and lepton numbers. Phys. Rev. D 40, 2487–2489 (1989). https://doi.org/10.1103/PhysRevD.40.2487

    Article  ADS  Google Scholar 

  65. C.D. Carone, H. Murayama, Possible light U(1) gauge boson coupled to baryon number. Phys. Rev. Lett. 74, 3122–3125 (1995). https://doi.org/10.1103/PhysRevLett.74.3122

    Article  ADS  Google Scholar 

  66. C.D. Carone, H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number. Phys. Rev. D 52, 484–493 (1995). https://doi.org/10.1103/PhysRevD.52.484

    Article  ADS  Google Scholar 

  67. P.F. Perez, T. Han, T. Li, M.J. Ramsey-Musolf, Leptoquarks and neutrino masses at the LHC. Nucl. Phys. B 819, 139–176 (2009). https://doi.org/10.1016/j.nuclphysb.2009.04.009

  68. M. Duerr, P.F. Perez, M.B. Wise, Gauge theory for baryon and lepton numbers with leptoquarks. Phys. Rev. Lett. 110, 231801 (2013). https://doi.org/10.1103/PhysRevLett.110.231801

  69. T.R. Dulaney, P.F. Perez, M.B. Wise, Dark matter, baryon asymmetry, and spontaneous B and L breaking. Phys. Rev. D 83, 023520 (2011). https://doi.org/10.1103/PhysRevD.83.023520

  70. P.V. Dong, H.N. Long, A simple model of gauged lepton and baryon charges. Phys. Int. 6(1), 23–32 (2010). https://doi.org/10.3844/pisp.2015.23.32

    Article  Google Scholar 

  71. P.F. Perez, M.B. Wise, Baryon and lepton number as local gauge symmetries. Phys. Rev. D 82, 011901 (2010). https://doi.org/10.1103/PhysRevD.82.079901, https://doi.org/10.1103/PhysRevD.82.011901

  72. P.F. Perez, M.B. Wise, Low energy supersymmetry with baryon and lepton number gauged. Phys. Rev. D 84, 055015 (2011). https://doi.org/10.1103/PhysRevD.84.055015

  73. P.F. Perez, M.B. Wise, Breaking local baryon and lepton number at the TeV scale. JHEP2011(8), 68 (2011). https://doi.org/10.1007/JHEP08(2011)068

  74. P. Schwaller, T.M.P. Tait, R. Vega-Morales, Dark matter and vectorlike leptons from gauged lepton number. Phys. Rev. D 88(3), 035001 (2013). https://doi.org/10.1103/PhysRevD.88.035001

  75. L. Parker, Particle creation in expanding universes. Phys. Rev. Lett. 21, 562–564 (1968). https://doi.org/10.1103/PhysRevLett.21.562

    Article  ADS  Google Scholar 

  76. L. Parker, Quantized fields and particle creation in expanding universes. I. Phys. Rev. 183, 1057–1068 (1969). https://doi.org/10.1103/PhysRev.183.1057

    Article  ADS  MATH  Google Scholar 

  77. O. Elgaroy, S. Hannestad, T. Haugboelle, Observational constraints on particle production during inflation. JCAP 0309, 008 (2003). https://doi.org/10.1088/1475-7516/2003/09/008

    Article  ADS  Google Scholar 

  78. N. Barnaby, Z. Huang, Particle production during inflation: observational constraints and signatures. Phys. Rev. D 80, 126018 (2009). https://doi.org/10.1103/PhysRevD.80.126018

    Article  ADS  Google Scholar 

  79. S.M. Carroll, Spacetime and geometry: an introduction to general relativity (Addison-Wesley, San Francisco, USA, 2004). ISBN 0805387323, 9780805387322

    Google Scholar 

  80. D.H. Lyth, The curvature perturbation in a box. JCAP 0712, 016 (2007). https://doi.org/10.1088/1475-7516/2007/12/016

    Article  ADS  Google Scholar 

  81. M. Carena, A. Daleo, B.A. Dobrescu, T.M.P. Tait, \(Z^\prime \) gauge bosons at the Tevatron. Phys. Rev. D 70, 093009 (2004). https://doi.org/10.1103/PhysRevD.70.093009

  82. J.L. Rosner, Prominent decay modes of a leptophobic \(Z^\prime \). Phys. Lett. B 387, 113–117 (1996). https://doi.org/10.1016/0370-2693(96)01022-2

    Google Scholar 

  83. H. Georgi, S.L. Glashow, Decays of a leptophobic gauge boson. Phys. Lett. B 387, 341–345 (1996). https://doi.org/10.1016/0370-2693(96)00997-5

    Article  ADS  Google Scholar 

  84. E. Accomando, A. Belyaev, L. Fedeli, S.F. King, C. Shepherd-Themistocleous, Z’ physics with early LHC data. Phys. Rev. D 83, 075012 (2011). https://doi.org/10.1103/PhysRevD.83.075012

    Article  ADS  Google Scholar 

  85. P.J. Fox, J. Liu, D. Tucker-Smith, N. Weiner, An Effective Z’. Phys. Rev. D 84, 115006 (2011). https://doi.org/10.1103/PhysRevD.84.115006

  86. B.A. Dobrescu, F. Yu, Coupling-mass mapping of dijet peak searches. Phys.Rev. D. 88(3), 035021 (2013). https://doi.org/10.1103/PhysRevD.88.035021, https://doi.org/10.1103/PhysRevD.90.079901

  87. P.F. Perez, S. Ohmer, H.H. Patel, Minimal theory for lepto-baryons. Phys. Lett. B 735, 283–287 (2014). https://doi.org/10.1016/j.physletb.2014.06.057

  88. K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014). https://doi.org/10.1088/1674-1137/38/9/090001

  89. G. Aad et al., Search for new phenomena in the dijet mass distribution using \(p-p\) collision data at \(\sqrt{s}=8\) TeV with the ATLAS detector. Phys. Rev. D 91(5), 052007 (2015). https://doi.org/10.1103/PhysRevD.91.052007

    Google Scholar 

  90. G. Aad et al., Search for high-mass dilepton resonances in pp collisions at 8 TeV with the ATLAS detector. Phys. Rev. D 90(5), 052005 (2014). https://doi.org/10.1103/PhysRevD.90.052005

    Article  ADS  Google Scholar 

  91. J. Heeck, Unbroken B-L symmetry. Phys. Lett. B 739, 256–262 (2014). https://doi.org/10.1016/j.physletb.2014.10.067

  92. B.A. Dobrescu, Leptophobic boson signals with leptons, jets and missing energy (2015) arXiv:1506.04435

  93. V. Khachatryan et al., Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \(\sqrt{s} =\) 8 TeV. Phys. Rev. D 91(5), 052009 (2015). https://doi.org/10.1103/PhysRevD.91.052009

    Google Scholar 

  94. S.R. Zadeh, S.S. Gousheh, Effects of the U\(_{\rm Y}\)(1) Chern-Simons term and its baryonic contribution on matter asymmetries and hypermagnetic fields. Phys. Rev. D 95(5), 056001 (2017). https://doi.org/10.1103/PhysRevD.95.056001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil David Barrie .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barrie, N.D. (2018). An Asymmetric Universe from Inflation. In: Cosmological Implications of Quantum Anomalies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94715-0_3

Download citation

Publish with us

Policies and ethics