Skip to main content

Strategies to Improve Enzymes via Solid-State Fermentation

  • Chapter
  • First Online:
Sustainable Approaches for Biofuels Production Technologies

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 7))

Abstract

Solid-state fermentation (SSF) is the fermentation process which occurs on a solid surface in the absence of “free” water, where the moisture is absorbed to the solid matrix. SSF is gaining an advantageous edge over other fermentation techniques due to its less complexity and more proximity to the normal environment of many microorganisms. On the other hand, a difficulty arises while estimating the biomass concentration in solid-state fermentation. Various factors like direct product application, the increased concentration of the product, less cost of production, and reduced energy requirement are responsible in making SSF as one of the potent technologies for various enzyme productions as seen in case of cellulase, tannase, and lipase. Improvisation of cellulase production in solid-state fermentation can be achieved to a greater extent by making use of varying degrees of substrates which are lignocellulosic in nature, the implicated microorganisms, culture, and process parameters like moisture content and water activity, nutrients diffusion, size of substrate particle, pH, temperature, surfactants, and bioreactor designs. Submerged fermentation whereas holds a different place in terms of various types of fermentations as it has only one major problem related to the oxygen transfer to microorganisms which in turn depends on the configuration, size, and the agitation/aeration system used in the reactor. In order to characterize oxygen transfer, a parameter is known as K La (oxygen transfer coefficient) whose value gives the estimation that how much of the oxygen is transferred by the equipment independent of the reactor volume and hence, for scale-up studies, it becomes an important parameter. In case of antioxidants production using SSF, it was observed that pomace tends to increase the antioxidant activity convergent with an increase in activity of β-glucosidase. Different studies tend to show that P. floridensis as an important organism used during the production of lingo cellulolytic enzyme and consecutive advancement in in vitro digestibility of wheat straw has been carried out to a larger extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol 86:656–669

    Article  Google Scholar 

  • Durand A (2003) Bioreactor designs for solid state fermentation. vol 13, pp 113–125

    Article  MathSciNet  Google Scholar 

  • Manan M, Webb C (2018) Estimation of growth in solid state fermentation: a review. vol 14, pp 61–69

    Google Scholar 

  • Mienda B, Idi A (2011) Microbiological features of solid state fermentation and its applications. An overview. vol 2, pp 21–26

    Google Scholar 

  • Mitchell DA et al (2011) 2.25—Bioreactors for solid-state fermentation A2. In Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 347–360

    Chapter  Google Scholar 

  • Muthusamy C, Ps B (2013) Tannase: source, biocatalytic characteristics, and bioprocesses for production. pp 259–293

    Google Scholar 

  • Nagel FJ et al (2001) Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol Bioeng 72(2):219–230

    Article  Google Scholar 

  • Ramos-Sánchez L et al (2015) Fungal lipase production by solid-state fermentation. vol 5, pp 1–9

    Google Scholar 

  • Rodríguez González J et al (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Vol 41, pp 2264–2269

    Google Scholar 

  • Sharma RK, Arora DS (2010) Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresour Technol 101(23):9248–9253

    Article  Google Scholar 

  • Singhania RR et al (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549

    Article  Google Scholar 

  • Vattem DA, Shetty K (2002) Solid-state production of phenolic antioxidants from cranberry pomace by Rhizopus oligosporus. Food Biotechnol 16(3):189–210

    Article  Google Scholar 

  • Viniegra-González G et al (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13(2):157–167

    Article  Google Scholar 

  • White BL, Howard LR, Prior RL (2010) Proximate and polyphenolic characterization of cranberry pomace. J Agric Food Chem 58(7):4030–4036

    Article  Google Scholar 

Download references

Acknowledgements

We would love to thank School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu, J&K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, I., Kour, M., Kour, G. (2019). Strategies to Improve Enzymes via Solid-State Fermentation. In: Srivastava, N., Srivastava, M., Mishra, P., Upadhyay, S., Ramteke, P., Gupta, V. (eds) Sustainable Approaches for Biofuels Production Technologies. Biofuel and Biorefinery Technologies, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-94797-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94797-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94796-9

  • Online ISBN: 978-3-319-94797-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics