Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 438 Accesses

Abstract

This thesis sits at the intersection of two distinct fields: Rydberg atomic physics and terahertz wave technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford, 2006)

    Google Scholar 

  2. S. Fray, C.A. Diez, T.W. Hänsch, M. Weitz, Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004)

    Article  ADS  Google Scholar 

  3. S.L. Gilbert, M.C. Noecker, R.N. Watts, C.E. Wieman, Measurement of parity nonconservation in atomic cesium. Phys. Rev. Lett. 55, 2680 (1985)

    Article  ADS  Google Scholar 

  4. K.B. Davis et al., Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  5. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  6. M. Anderson, J. Ensher, M. Matthews, C. Wieman, E. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 14 (1995)

    Article  Google Scholar 

  7. M. de Angelis et al., Precision gravimetry with atomic sensors. Meas. Sci. Technol. 20, 022001 (2009)

    Article  Google Scholar 

  8. A. Facon et al., A sensitive electrometer based on a Rydberg atom in a Schrdinger-cat state. Nature 535, 262 (2016)

    Article  ADS  Google Scholar 

  9. H.S. Margolis, Frequency metrology and clocks. J. Phys. B 42, 154017 (2009)

    Article  ADS  Google Scholar 

  10. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1, 97 (2007)

    Article  ADS  Google Scholar 

  11. P.U. Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging-modern techniques and applications. Laser Photon. Rev. 5, 124 (2011)

    Article  ADS  Google Scholar 

  12. P. Tassin, T. Koschny, C.M. Soukoulis, Graphene for terahertz applications. Science 341, 620 (2013)

    Article  ADS  Google Scholar 

  13. B. Reinhard, O. Paul, M. Rahm, Metamaterial-based photonic devices for terahertz technology. IEEE J. Sel. Topics Quantum Electron. 19, 8500912 (2013)

    Article  ADS  Google Scholar 

  14. M. Brune et al., Quantum rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800 (1996)

    Article  ADS  Google Scholar 

  15. H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, S. Hofferberth, Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014)

    Article  ADS  Google Scholar 

  16. D. Tiarks, S. Baur, K. Schneider, S. Dürr, G. Rempe, Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014)

    Article  ADS  Google Scholar 

  17. M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  18. D. Maxwell et al., Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett. 110, 103001 (2013)

    Article  ADS  Google Scholar 

  19. H. Weimer, M. Muller, I. Lesanovsky, P. Zoller, H.P. Buchler, A Rydberg quantum simulator. Nat. Phys. 6, 382 (2010)

    Article  Google Scholar 

  20. J.A. Sedlacek et al., Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 8, 819 (2012)

    Article  Google Scholar 

  21. A.K. Mohapatra, T.R. Jackson, C.S. Adams, Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007)

    Article  ADS  Google Scholar 

  22. A.J. McCulloch, D.V. Sheludko, M. Junker, R.E. Scholten, High-coherence picosecond electron bunches from cold atoms. Nat. Commun. 4, 1692 (2013)

    Article  ADS  Google Scholar 

  23. J.J. McClelland et al., Bright focused ion beam sources based on laser-cooled atoms. Appl. Phys. Rev. 3 (2016)

    Google Scholar 

  24. P. Goy, J.M. Raimond, G. Vitrant, S. Haroche, Millimeter-wave spectroscopy in cesium Rydberg states. Quantum defects, fine- and hyperfine-structure measurements. Phys. Rev. A 26, 2733 (1982)

    Article  ADS  Google Scholar 

  25. C.J. Sansonetti, C.J. Lorenzen, Doppler-free resonantly enhanced two-photon spectroscopy of np and nf Rydberg states in atomic cesium. Phys. Rev. A 30, 1805 (1984)

    Google Scholar 

  26. J.-H. Choi, J.R. Guest, A.P. Povilus, E. Hansis, G. Raithel, Magnetic trapping of long-lived cold Rydberg atoms. Phys. Rev. Lett. 95, 243001 (2005)

    Article  ADS  Google Scholar 

  27. P. Lancuba, S.D. Hogan, Electrostatic trapping and in situ detection of Rydberg atoms above chip-based transmission lines. J. Phys. B 49, 074006 (2016)

    Article  ADS  Google Scholar 

  28. G. Epple et al., Rydberg atoms in hollow-core photonic crystal fibres. Nat. Commun. 5, 4132 (2014)

    Article  Google Scholar 

  29. R. Heidemann et al., Rydberg excitation of Bose-Einstein condensates. Phys. Rev. Lett. 100, 033601 (2008)

    Article  ADS  Google Scholar 

  30. A. Deller, A.M. Alonso, B.S. Cooper, S.D. Hogan, D.B. Cassidy, Electrostatically guided Rydberg positronium. Phys. Rev. Lett. 117, 073202 (2016)

    Article  ADS  Google Scholar 

  31. T. Kazimierczuk, D. Frohlich, S. Scheel, H. Stolz, M. Bayer, Giant Rydberg excitons in the copper oxide Cu\(_2\)O. Nature 514, 343 (2014)

    Google Scholar 

  32. A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, F. Renzoni, Magnetic induction tomography using an all-optical \(^{87}\)Rb atomic magnetometer. Opt. Lett. 39, 6367 (2014)

    Google Scholar 

  33. S. Knappe et al., A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460 (2004)

    Article  ADS  Google Scholar 

  34. T.H. Sander et al., Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 3, 981 (2012)

    Article  Google Scholar 

  35. D.J. Saunders et al., Cavity-enhanced room-temperature broadband Raman memory. Phys. Rev. Lett. 116, 090501 (2016)

    Article  ADS  Google Scholar 

  36. M.M. Müller et al., Room-temperature Rydberg single-photon source. Phys. Rev. A 87, 053412 (2013)

    Article  ADS  Google Scholar 

  37. A. Laliotis, T.P. de Silans, I. Maurin, M. Ducloy, D. Bloch, CasimirPolder interactions in the presence of thermally excited surface modes. Nat. Commun. 5, 4364 (2014)

    Article  Google Scholar 

  38. J. Keaveney et al., Cooperative lamb shift in an atomic vapor layer of nanometer thickness. Phys. Rev. Lett. 108, 173601 (2012)

    Article  ADS  Google Scholar 

  39. C.B. Alcock, V.P. Itkin, M.K. Horrigan, Vapour pressure equations for the metallic elements: 2982500K. Can. Metall. Q. 23, 309 (1984)

    Article  Google Scholar 

  40. T. Baluktsian, B. Huber, R. Löw, T. Pfau, Evidence for strong van der waals type Rydberg-Rydberg interaction in a thermal vapor. Phys. Rev. Lett. 110, 123001 (2013)

    Article  ADS  Google Scholar 

  41. A. Urvoy et al., Strongly correlated growth of Rydberg aggregates in a vapor cell. Phys. Rev. Lett. 114, 203002 (2015)

    Article  ADS  Google Scholar 

  42. C. Carr, R. Ritter, C.G. Wade, C.S. Adams, K.J. Weatherill, Nonequilibrium phase transition in a dilute Rydberg ensemble. Phys. Rev. Lett. 111, 113901 (2013)

    Article  ADS  Google Scholar 

  43. D. Weller, A. Urvoy, A. Rico, R. Löw, H. Kübler, Charge-induced optical bistability in thermal Rydberg vapor. Phys. Rev. A 94, 063820 (2016)

    Article  ADS  Google Scholar 

  44. C.M. O’Sullivan, J.A. Murphy, Field Guide to Terahertz Sources, Detectors, and Optics (SPIE PRESS, Bellingham, Washington USA, 2012)

    Book  Google Scholar 

  45. R.A. Lewis, A review of terahertz sources. J. Phys. D 47, 374001 (2014)

    Article  Google Scholar 

  46. K.A. McIntosh et al., Terahertz photomixing with diode lasers in low-temperature-grown GaAs. Appl. Phys. Lett. 67, 3844 (1995). https://doi.org/10.1063/1.115292

  47. M.A. Belkin, F. Capasso, New frontiers in quantum cascade lasers: high performance room temperature terahertz sources. Phys. Scr. 90, 118002 (2015)

    Article  ADS  Google Scholar 

  48. A. Maestrini et al., A frequency-multiplied source with more than 1 mW of power across the 840–900 GHz band. IEEE Trans. Microwave Theory Tech. 58, 1925 (2010)

    Article  ADS  Google Scholar 

  49. M. Shalaby, C. Hauri, Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun. 6, 5976 (2015)

    Article  ADS  Google Scholar 

  50. H. Hirori, A. Doi, F. Blanchard, K. Tanaka, Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO\(_3\). Appl. Phys. Lett. 98, 091106 (2011)

    Google Scholar 

  51. X. Ropagnol, F. Blanchard, T. Ozaki, M. Reid, Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Appl. Phys. Lett. 103, 161108 (2013)

    Article  ADS  Google Scholar 

  52. H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, X.-C. Zhang, Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514 (2007)

    Article  Google Scholar 

  53. M. Griffin, Bolometers for far-infrared and submillimetre astronomy. Nucl. Instrum. Methods Phys. Res., Sect. A 444, 397 (2000)

    Article  ADS  Google Scholar 

  54. J.P. Guillet et al., Review of terahertz tomography techniques. J. Infrared Millim. Terahertz Waves 35, 382 (2014)

    Article  Google Scholar 

  55. H.-J. Song, T. Nagatsuma, Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1, 256 (2011)

    Article  ADS  Google Scholar 

  56. J. Gao et al., Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer. Appl. Phys. Lett. 86, 244104 (2005)

    Article  ADS  Google Scholar 

  57. S. Verghese et al., Generation and detection of coherent terahertz waves using two photomixers. Appl. Phys. Lett. 73, 3824 (1998)

    Article  ADS  Google Scholar 

  58. M. Hangyo, M. Tani, T. Nagashima, Terahertz time-domain spectroscopy of solids: a review. Int. J. Infrared Millim. Waves 26, 1661 (2005)

    Article  ADS  Google Scholar 

  59. K. Ikushima, Single-photon counting and passive microscopy of terahertz radiation, in Frontiers in Optical Methods (Springer, 2014), pp. 197–212

    Google Scholar 

  60. A.W. Lee, Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Opt. Lett. 30, 2563 (2005)

    Article  ADS  Google Scholar 

  61. P.S. Stefanova, J.M. Hammler, A.K. Klein, A.J. Gallant, C. Balocco, Polymer-based micro-golay cells for THz detection, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2016), pp. 1–2

    Google Scholar 

  62. M. Kehrt, J. Beyer, C. Monte, J. Hollandt, Design and characterization of a TES bolometer for Fourier transform spectroscopy in the THz range, in Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2014), pp. 1–2

    Google Scholar 

  63. A.J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, R. Hillenbrand, Terahertz near-field nanoscopy of nanodevices. Nano Lett. 8, 3766 (2008)

    Article  ADS  Google Scholar 

  64. N. Šibalić, J. Pritchard, C. Adams, K. Weatherill, ARC: an open-source library for calculating properties of alkali Rydberg atoms (2016), arXiv:1612.05529

  65. J. Raimond, P. Goy, G. Vitrant, S. Haroche, Millimeter-wave spectroscopy of cesium Rydberg states and possible applications to frequency metrology. J. Phys. Colloques (1981)

    Google Scholar 

  66. J.C. Camparo, Atomic stabilization of electromagnetic field strength using rabi resonances. Phys. Rev. Lett. 80, 222 (1998)

    Article  ADS  Google Scholar 

  67. L. Moi et al., Heterodyne detection of Rydberg atom maser emission. Opt. Commun. 33, 47 (1980)

    Article  ADS  Google Scholar 

  68. L. Moi et al., Rydberg-atom masers. I. A theoretical and experimental study of super-radiant systems in the millimeter-wave domain. Phys. Rev. A 27, 2043 (1983)

    Article  ADS  Google Scholar 

  69. M. Drabbels, L.D. Noordam, Infrared imaging camera based on a Rydberg atom photodetector. Appl. Phys. Lett. 74, 1797 (1999)

    Article  ADS  Google Scholar 

  70. A. Gurtler, A.S. Meijer, W.J. van der Zande, Imaging of terahertz radiation using a Rydberg atom photocathode. Appl. Phys. Lett. 83, 222 (2003)

    Article  ADS  Google Scholar 

  71. M.T. Simons et al., Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Appl. Phys. Lett. 108 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Wade .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wade, C.G. (2018). Introduction. In: Terahertz Wave Detection and Imaging with a Hot Rydberg Vapour. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94908-6_1

Download citation

Publish with us

Policies and ethics