Skip to main content

Isoperimetric Inequalities for Eigenvalues of the Laplacian

  • Chapter
  • First Online:
Geometry of PDEs and Related Problems

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2220))

Abstract

These lecture notes give an overview of “isoperimetric inequalities”, namely inequalities involving only geometric features, for the eigenvalues of the Laplace operator, with Dirichlet boundary conditions. In other words, we are mainly interested in minimization problems like

$$\displaystyle \begin{aligned} \text{min} \{\lambda_k(\varOmega),\;\varOmega\subset \mathbb{R}^N \mbox{ open set, with some geometric constraints. }\} \end{aligned} $$
(2.1)

Here λ k(Ω) denotes the k-th eigenvalue of the Laplace operator with Dirichlet boundary conditions and the geometric constraints can involve the volume or the perimeter or the diameter or some box constraints or some specific sub-classes like polygons or convex sets. Most of the information contained in these notes are from the book of the author (Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in mathematics, Birkhäuser, Basel, 2006), but some more recent results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains. Comment. Math. Helv. 69(1), 142–154 (1994)

    Article  MathSciNet  Google Scholar 

  2. L. Ambrosio, A. Colesanti, E. Villa, Outer Minkowski content for some classes of closed sets. Math. Ann. 342, 727–748 (2008)

    Article  MathSciNet  Google Scholar 

  3. P.R.S. Antunes, P. Freitas, Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154(1), 235–257 (2012)

    Article  MathSciNet  Google Scholar 

  4. P.R.S. Antunes, P. Freitas, Optimal spectral rectangles and lattice ellipses. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2150), 20120492 (2013)

    Article  MathSciNet  Google Scholar 

  5. C. Bandle, Isoperimetric Inequalities and Applications. Monographs and Studies in Mathematics, vol. 7 (Pitman, Boston, 1980)

    Google Scholar 

  6. A. Berger, The eigenvalues of the Laplacian with Dirichlet boundary condition in \(\mathbb {R}^2\) are almost never minimized by disks. Ann. Global Anal. Geom. 47(3), 285–304 (2015)

    Google Scholar 

  7. B. Bogosel, A. Henrot, I. Lucardesi, Minimization of λ k(Ω) with a diameter constraint. SIAM J. Math. Anal. (2019, to appear)

    Google Scholar 

  8. L. Brasco, A. Pratelli, Sharp stability of some spectral inequalities. Geom. Funct. Anal. 22(1), 107–135 (2012)

    Article  MathSciNet  Google Scholar 

  9. L. Brasco, G. De Philippis, B. Velichkov, Faber-Krahn inequalities in sharp quantitative form. Duke Math. J. 164(9), 1777–1831 (2015)

    Article  MathSciNet  Google Scholar 

  10. H. Brézis, Analyse Fonctionnelle (Masson, Paris, 1983)

    MATH  Google Scholar 

  11. T. Briançon, Regularity of optimal shapes for the Dirichlet’s energy with volume constraint. ESAIM: COCV 10, 99–122 (2004)

    Article  MathSciNet  Google Scholar 

  12. T. Briançon, J. Lamboley, Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(4), 1149–1163 (2009)

    Article  MathSciNet  Google Scholar 

  13. D. Bucur, Regularity of optimal convex shapes. J. Convex Anal. 10(2), 501–516 (2003)

    MathSciNet  MATH  Google Scholar 

  14. D. Bucur, Minimization of the k-th eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal. 206(3), 1073–1083 (2012)

    Article  MathSciNet  Google Scholar 

  15. D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser, Boston, 2005)

    Google Scholar 

  16. D. Bucur, P. Freitas, Asymptotic behaviour of optimal spectral planar domains with fixed perimeter. J. Math. Phys. 54(5), 053504 (2013)

    Article  MathSciNet  Google Scholar 

  17. D. Bucur, A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. R. Soc. Lond. 456, 985–996 (2000)

    Article  MathSciNet  Google Scholar 

  18. D. Bucur, G. Buttazzo, A. Henrot, Minimization of λ 2(Ω) with a perimeter constraint. Indiana Univ. Math. J. 58, 2709–2728 (2009)

    Article  MathSciNet  Google Scholar 

  19. G. Buttazzo, G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122, 183–195 (1993)

    Article  MathSciNet  Google Scholar 

  20. T. Chatelain, M. Choulli, Clarke generalized gradient for eigenvalues. Commun. Appl. Anal. 1(4), 443–454 (1997)

    MathSciNet  MATH  Google Scholar 

  21. R. Courant, D. Hilbert, Methods of Mathematical Physics, vols. 1 and 2 (Wiley, New York, 1953 and 1962)

    Google Scholar 

  22. S.J. Cox, The generalized gradient at a multiple eigenvalue. J. Funct. Anal. 133(1), 30–40 (1995)

    Article  MathSciNet  Google Scholar 

  23. G. De Philippis, B. Velichkov, Existence and regularity of minimizers for some spectral functionals with perimeter constraint. Appl. Math. Optim. 69(2), 199C231 (2014)

    Google Scholar 

  24. Y. Egorov, V. Kondratiev, On Spectral Theory of Elliptic Operators. Operator Theory: Advances and Applications, vol. 89 (Birkhäuser, Basel, 1996)

    Chapter  Google Scholar 

  25. G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitz. Ber. Bayer. Akad. Wiss. 169–172 (1923)

    Google Scholar 

  26. M. Flucher, Approximation of Dirichlet eigenvalues on domains with small holes. J. Math. Anal. Appl. 193(1), 169–199 (1995)

    Article  MathSciNet  Google Scholar 

  27. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Reprint of the 1952 Edition, Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  28. E.M. Harrell, P. Kröger, K. Kurata, On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33(1), 240–259 (2001)

    Article  MathSciNet  Google Scholar 

  29. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics (Birkhäuser, Basel, 2006)

    Google Scholar 

  30. A. Henrot (ed.), Shape Optimization and Spectral Theory (De Gruyter Open, Warzaw, 2017). Downloadable at https://www.degruyter.com/view/product/490255

  31. A. Henrot, E. Oudet, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions. Arch. Rational Mech. Anal. 169, 73–87 (2003)

    Article  MathSciNet  Google Scholar 

  32. A. Henrot, M. Pierre, Variation et optimisation de formes. Mathématiques & Applications (Springer, Berlin, 2005). English version: Shape Variation and Optimization. Tracts in Mathematics, vol. 28 (European Mathematical Society, Zürich, 2018)

    Book  Google Scholar 

  33. A. Henrot, D. Zucco, Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle. https://arxiv.org/abs/1702.01307

  34. J. Hersch, The method of interior parallels applied to polygonal or multiply connected membranes. Pacific J. Math. 13, 1229–1238 (1963)

    Article  MathSciNet  Google Scholar 

  35. I. Hong, On an inequality concerning the eigenvalue problem of membrane. Kodai Math. Sem. Rep. 6, 113–114 (1954)

    Article  MathSciNet  Google Scholar 

  36. B. Kawohl, Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, vol. 1150 (Springer, Berlin, 1985)

    Google Scholar 

  37. S. Kesavan, On two functionals connected to the Laplacian in a class of doubly connected domains. Proc. R. Soc. Edinb. Sect. A 133(3), 617–624 (2003)

    Article  MathSciNet  Google Scholar 

  38. S. Kesavan, Symmetrization and Applications. Series in Analysis, vol. 3 (World Scientific, Hackensack, 2006)

    Google Scholar 

  39. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94, 97–100 (1924)

    Article  MathSciNet  Google Scholar 

  40. E. Krahn, Über Minimaleigenschaften der Kugel in drei un mehr Dimensionen. Acta Comm. Univ. Dorpat. A9, 1–44 (1926)

    MATH  Google Scholar 

  41. J. Lamboley, About Hölder-regularity of the convex shape minimizingλ 2. Appl. Anal. 90(2), 263–278 (2011)

    Article  MathSciNet  Google Scholar 

  42. J. Lamboley, A. Novruzi, Polygons as optimal shapes with convexity constraint. SIAM J. Control Optim. 48, 3003–3025 (2009/2010)

    Article  MathSciNet  Google Scholar 

  43. J. Lamboley, A. Novruzi, M. Pierre, Regularity and singularities of optimal convex shapes in the plane. Arch. Ration. Mech. Anal. 205, 311–343 (2012)

    Article  MathSciNet  Google Scholar 

  44. V. Maz’ja, S. Nazarov, B. Plamenevskii, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. I. Mathematische Lehrbücher und Monographien (Akademie-Verlag, Berlin, 1991)

    Google Scholar 

  45. D. Mazzoleni, A. Pratelli, Existence of minimizers for spectral problems. J. Math. Pures Appl. (9) 100(3), 433–453 (2013)

    Article  MathSciNet  Google Scholar 

  46. A. Melas, On the nodal line of the second eigenfunction of the Laplacian in \({\mathbb {R}}^2\). J. Differ. Geom. 35, 255–263 (1992)

    Google Scholar 

  47. S.A. Nazarov, J. Sokolowski, Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82(2), 125–196 (2003)

    Article  MathSciNet  Google Scholar 

  48. R. Osserman, The isoperimetric inequality. Bull. Am. Math. Soc. 84(6), 1182–1238 (1978)

    Article  MathSciNet  Google Scholar 

  49. E. Oudet, Some numerical results about minimization problems involving eigenvalues. ESAIM COCV 10, 315–335 (2004)

    Article  Google Scholar 

  50. S. Ozawa, Singular variation of domains and eigenvalues of the Laplacian. Duke Math. J. 48(4), 767–778 (1981)

    Article  MathSciNet  Google Scholar 

  51. G. Pólya, On the characteristic frequencies of a symmetric membrane. Math. Z. 63, 331–337 (1955)

    Article  MathSciNet  Google Scholar 

  52. G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, vol. 27 (Princeton University Press, Princeton, 1951)

    Google Scholar 

  53. A.G. Ramm, P.N. Shivakumar, Inequalities for the minimal eigenvalue of the Laplacian in an annulus. Math. Inequal. Appl. 1(4), 559–563 (1998)

    MathSciNet  MATH  Google Scholar 

  54. B. Rousselet, Shape design sensitivity of a membrane. J. Optim. Theory Appl. 40, 595–623 (1983)

    Article  MathSciNet  Google Scholar 

  55. V. Šverak, On optimal shape design. J. Math. Pures Appl. 72(6), 537–551 (1993)

    MathSciNet  MATH  Google Scholar 

  56. P. Tilli, D. Zucco, Asymptotics of the first Laplace eigenvalue with Dirichlet regions of prescribed length. SIAM J. Math. Anal. 45, 3266–3282 (2013)

    Article  MathSciNet  Google Scholar 

  57. B.A. Troesch, Elliptical Membranes with smallest second eigenvalue. Math. Comput. 27(124), 767–772 (1973)

    Article  MathSciNet  Google Scholar 

  58. S.A. Wolf, J.B. Keller, Range of the first two eigenvalues of the Laplacian. Proc. R. Soc. Lond. A 447, 397–412 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This text is largely inspired by the book [29] of the author supplemented by more recent results. In that context, I am grateful to my collaborators Beniamin Bogosel, Ilaria Lucardesi, Davide Zucco who agree to include recent unpublished results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Henrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henrot, A. (2018). Isoperimetric Inequalities for Eigenvalues of the Laplacian. In: Bianchini, C., Henrot, A., Magnanini, R. (eds) Geometry of PDEs and Related Problems. Lecture Notes in Mathematics(), vol 2220. Springer, Cham. https://doi.org/10.1007/978-3-319-95186-7_2

Download citation

Publish with us

Policies and ethics