Skip to main content

Compressed Sensing in Cyber Physical Social Systems

  • Chapter
  • First Online:
Principles of Modeling

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10760))

Abstract

We overview the main results in Compressed Sensing and Social Networks, and discuss the impact they have on Cyber Physical Social Systems (CPSS), which are currently emerging on top of the Internet of Things. Moreover, inspired by randomized Gossip Protocols, we introduce TopGossip, a new compressed-sensing algorithm for the prediction of the top-k most influential nodes in a social network. TopGossip is able to make this prediction by sampling only a relatively small portion of the social network, and without having any prior knowledge of the network structure itself, except for its set of nodes. Our experimental results on three well-known benchmarks, Facebook, Twitter, and Barabási, demonstrate both the efficiency and the accuracy of the TopGossip algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GE Industrial Internet insights report. Technical report (2015). www.ge.com/digital/sites/default/files/industrial-internet-insights-report.pdf

  2. Bae, J., Kim, S.: Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. A 395, 549–559 (2014)

    Article  MathSciNet  Google Scholar 

  3. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Berinde, R., Gilbert, A., Indyk, P., Karloff, H., Strauss, M.: Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: Allerton Conference on Communication, Control, and Computing (2008)

    Google Scholar 

  5. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–1182 (1987)

    Article  Google Scholar 

  6. Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theory 12, 21–34 (2006)

    Article  Google Scholar 

  7. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 45(6), 2508–2530 (2006)

    Article  MathSciNet  Google Scholar 

  8. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)

    Article  Google Scholar 

  9. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  10. Cheraghchi, M., Karbasi, A., Mohajer, S., Saligrama, V.: Graph constrained group testing. IEEE Trans. Inf. Theory 58(1), 248–262 (2012)

    Article  MathSciNet  Google Scholar 

  11. Costa, L., Rodrigues, F., Travieso, G., Villas-Boas, P.: Characterization of complex networks: a survey. Adv. Phys. 56, 167–242 (2007)

    Article  Google Scholar 

  12. Crovella, M., Kolaczyk, E.: Graph wavelets for spatial traffic analysis. In: Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1848–1857. IEEE (2003)

    Google Scholar 

  13. Davenport, M., Duarte, M., Eldar, Y., Kutyniok, G.: Introduction to compressed sensing. In: Compressed Sensing: Theory and Applications. Cambridge UP (2012)

    Google Scholar 

  14. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  15. Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Netw. 27, 31–38 (2005)

    Article  Google Scholar 

  16. Facebook Climbs To 1.59 Billion Users And Crushes Q4 Estimates With 5.8B Revenue (2016). http://techcrunch.com/2016/01/27/facebook-earnings-q4-2015

  17. Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  18. Gephi platform for interactive visualization and exploration of graphs (2017). http://rankinfo.pkqs.net/twittercrawl.dot.gz

  19. Hammond, D., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30, 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  20. Haupt, J., Bajwa, W., Rabbat, M., Nowak, R.: Compressed sensing for networked data: a different approach to decentralized compression. IEEE Sig. Process. Mag. 25(2), 92–101 (2008)

    Article  Google Scholar 

  21. Huang, X., Vodenska, I., Wang, F., Havlin, S., Stanley, H.E.: Identifying influential directors in the United States corporate governance network. Phys. Rev. E 84 (2011)

    Google Scholar 

  22. Lee, M., Choi, S., Chung, C.: Efficient algorithms for updating betweenness centrality in fully dynamic graphs. Inf. Sci. 326, 278–296 (2016)

    Article  MathSciNet  Google Scholar 

  23. Liu, J.G., Ren, Z.M., Guo, Q.: Ranking the spreading influence in complex networks. Phys. A 392, 4154–4159 (2013)

    Article  Google Scholar 

  24. Lu, L., Zhou, T., Zhang, Q.M., Stanley, H.: The h-index of a network node and its relation to degree and coreness. Nat. Commun. 7, 10168 (2016)

    Article  Google Scholar 

  25. Mackenzie, D.: Compressed sensing makes every pixel count. What’s Happening Math. Sci. 7, 114–127 (2009)

    Google Scholar 

  26. Mahyar, H.: Detection of top-k central nodes in social networks: a compressive sensing approach. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM, pp. 902–909, August 2015

    Google Scholar 

  27. Mahyar, H., Rabiee, H.R., Hashemifar, Z.S.: UCS-NT: an unbiased compressive sensing framework for network tomography. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 4534–4538 (2013)

    Google Scholar 

  28. Mahyar, H., Rabiee, H.R., Hashemifar, Z.S., Siyari, P.: UCS-WN: an unbiased compressive sensing framework for weighted networks. In: Conference on Information Sciences and Systems, CISS. pp. 1–6, March 2013

    Google Scholar 

  29. Mahyar, H., Rabiee, H.R., Movaghar, A., Ghalebi, E., Nazemian, A.: CS-ComDet: a compressive sensing approach for inter-community detection in social networks. In: IEEE/ACM ASONAM, pp. 89–96, August 2015

    Google Scholar 

  30. Mahyar, H., Rabiee, H.R., Movaghar, A., Hasheminezhad, R., Ghalebi, E., Nazemian, A.: A low-cost sparse recovery framework for weighted networks under compressive sensing. In: IEEE International Conference on Social Computing and Networking, SocialCom, pp. 183–190, December 2015

    Google Scholar 

  31. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Sig. Process. 41(12), 3397–3415 (1993)

    Article  Google Scholar 

  32. Newman, S.: Networks: An introduction, 1st edn. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  33. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  34. Püschel, M., Moura, J.: Algebraic signal processing theory. arXiv/0612077v1, pp. 1–67 (2006)

    Google Scholar 

  35. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)

    Article  MathSciNet  Google Scholar 

  36. Sandryhaila, A., Moura, J.: Discrete signal processing on graphs: frequency analysis. IEEE Trans. Sig. Process. 62(12), 3042–3054 (2014)

    Article  MathSciNet  Google Scholar 

  37. Singh, B., Gupte, N.: Congestion and decongestion in a communication network. Phys. Rev. E 71(5), 055103 (2005)

    Article  Google Scholar 

  38. Sipser, M., Spielman, D.: Expander codes. IEEE Trans. Inf. Theory 42(6), 1710–1722 (1996)

    Article  MathSciNet  Google Scholar 

  39. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B 58, 267–288 (1994)

    MathSciNet  MATH  Google Scholar 

  40. Xu, S., Wang, P.: Identifying important nodes by adaptive leaderrank. Phys. A 469, 654–664 (2017)

    Article  Google Scholar 

  41. Xu, W., Mallada, E., Tang, A.: Compressive sensing over graphs. In: IEEE INFOCOM, pp. 2087–2095, April 2011

    Google Scholar 

  42. Zhu, X., Rabbat, M.: Approximating signals supported on graphs. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3921–3924 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the following awards: AT-HRSM CPSS/IoT Ecosystem, NSF-Frontiers Cyber-Cardia, US-AFOSR Arrive, EU-Artemis EMC2, EU-Ecsel Semi40, EU-Ecsel Productive 4.0, AT-FWF-NFN RiSE, AT-FWF-LogicCS-DC, AT-FFG Harmonia, AT-FFG Em2Apps, and TUW-CPPS-DK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Grosu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grosu, R., Ghalebi K., E., Movaghar, A., Mahyar, H. (2018). Compressed Sensing in Cyber Physical Social Systems. In: Lohstroh, M., Derler, P., Sirjani, M. (eds) Principles of Modeling. Lecture Notes in Computer Science(), vol 10760. Springer, Cham. https://doi.org/10.1007/978-3-319-95246-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95246-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95245-1

  • Online ISBN: 978-3-319-95246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics