Skip to main content

A Low-Cost Full Body Tracking System in Virtual Reality Based on Microsoft Kinect

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10851))

Abstract

We present an approach based on a natural user interface and virtual reality that allows the user’s body to be visualized and tracked inside a virtual environment. Our aim is to improve the sensation of virtual reality immersion through low-cost technology such as HTC Vive and Microsoft Kinect 2. The system has been developed using the Unity 3D game engine and C# language. Our approach has been validated through the implementation of an application for 3D mesh painting where the user is able to interact through hand gestures to select a color from the 3D color palette, rotate the 3D mesh and paint it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam Humanoid 3D model. https://unity3d.com/pages/adam

  2. Gone Gitmo. http://gonegitmo.blogspot.it/

  3. Anthes, C., Garca-Hernndez, R.J., Wiedemann, M., Kranzlmller, D.: State of the art of virtual reality technology. In: Proceedings of the 2016 IEEE Aerospace Conference, pp. 1–19, March 2016

    Google Scholar 

  4. Biocca, F., Delaney, B.: Immersive Virtual Reality Technology. Communication in the Age of Virtual Reality, pp. 57–124 (1995)

    Google Scholar 

  5. Brancati, N., Caggianese, G., Frucci, M., Gallo, L., Neroni, P.: Experiencing touchless interaction with augmented content on wearable head-mounted displays in cultural heritage applications. Pers. Ubiquit. Comput. 21(2), 203–217 (2017)

    Article  Google Scholar 

  6. Capece, N., Erra, U., Romano, S., Scanniello, G.: Visualising a software system as a city through virtual reality. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 319–327. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_28

    Chapter  Google Scholar 

  7. Ceylan, D., Li, W., Mitra, N.J., Agrawala, M., Pauly, M.: Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. 32(6), 186:1–186:11 (2013)

    Article  Google Scholar 

  8. Desai, P.R., Desai, P.N., Ajmera, K.D., Mehta, K.: A review paper on oculus rift-a virtual reality headset

    Google Scholar 

  9. Erra, U., Scanniello, G., Capece, N.: Visualizing the evolution of software systems using the forest metaphor. In: 2012 16th International Conference on Information Visualisation, pp. 87–92, July 2012

    Google Scholar 

  10. Erra, U., Colonnese, V.: Experiences in the development of an augmented reality dressing room. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 467–474. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22888-4_35

    Chapter  Google Scholar 

  11. Erra, U., Malandrino, D., Pepe, L.: A methodological evaluation of natural user interfaces for immersive 3D graph explorations. J. Vis. Lang. Comput. 44, 13–27 (2018)

    Article  Google Scholar 

  12. Erra, U., Scanniello, G.: Towards the visualization of software systems as 3D forests: the CodeTrees environment. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 981–988. SAC 2012. ACM, New York (2012)

    Google Scholar 

  13. Filkov, R.: Kinect v2 examples with MS-SDK. https://rfilkov.com/2014/08/01/kinect-v2-with-ms-sdk/x

  14. Greuter, S., Roberts, D.J.: Spacewalk: movement and interaction in virtual space with commodity hardware. In: Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–7. ACM (2014)

    Google Scholar 

  15. Kaushik, D., Jain, R., et al.: Natural user interfaces: trend in virtual interaction. arXiv preprint arXiv:1405.0101 (2014)

  16. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Comput. Vis. Image Underst. 81(3), 231–268 (2001)

    Article  Google Scholar 

  17. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2–3), 90–126 (2006)

    Article  Google Scholar 

  18. Niehorster, D.C., Li, L., Lappe, M.: The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception 8(3), 2041669517708205 (2017)

    Google Scholar 

  19. Patsadu, O., Nukoolkit, C., Watanapa, B.: Human gesture recognition using kinect camera. In: 2012 International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 28–32. IEEE (2012)

    Google Scholar 

  20. De la Peña, N., Weil, P., Llobera, J., Giannopoulos, E., Pomés, A., Spanlang, B., Friedman, D., Sanchez-Vives, M.V., Slater, M.: Immersive journalism: immersive virtual reality for the first-person experience of news. Presence Teleoperators Virtual Environ. 19(4), 291–301 (2010)

    Article  Google Scholar 

  21. Preis, J., Kessel, M., Werner, M., Linnhoff-Popien, C.: Gait recognition with kinect. In: 1st International Workshop on Kinect in Pervasive Computing, pp. 1–4. New Castle, UK (2012)

    Google Scholar 

  22. Razzaq, A., Wu, Z., Zhou, M., Ali, S., Iqbal, K.: Automatic conversion of human mesh into skeleton animation by using kinect motion. Int. J. Comput. Theory Eng. 7(6), 482 (2015)

    Article  Google Scholar 

  23. Ren, Z., Yuan, J., Meng, J., Zhang, Z.: Robust part-based hand gesture recognition using kinect sensor. IEEE Trans. Multimed. 15(5), 1110–1120 (2013)

    Article  Google Scholar 

  24. Ritschel, T., Botsch, M., Müller, S.: Multiresolution GPU mesh painting. In: Eurographics (Short Presentations), pp. 17–20 (2006)

    Google Scholar 

  25. Seibert, J., Shafer, D.M.: Control mapping in virtual reality: effects on spatial presence and controller naturalness. Virtual Real. 22(1), 79–88 (2018)

    Article  Google Scholar 

  26. Sell, J., O’Connor, P.: The xbox one system on a chip and kinect sensor. IEEE Micro 34(2), 44–53 (2014)

    Article  Google Scholar 

  27. Siriborvornratanakul, T.: A study of virtual reality headsets and physiological extension possibilities. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 497–508. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42108-7_38

    Chapter  Google Scholar 

  28. Slater, M., Linakis, V., Usoh, M., Kooper, R., Street, G.: Immersion, presence, and performance in virtual environments: an experiment with tri-dimensional chess. In: ACM Virtual Reality Software and Technology (VRST), vol. 163, p. 72. ACM Press, New York (1996)

    Google Scholar 

  29. Small, D.E.: Immersive virtual reality. Technical report, Sandia National Laboratories (SNL-NM), Albuquerque, NM, United States (2011)

    Google Scholar 

  30. Tang, M.: Recognizing hand gestures with microsofts kinect. Department of Electrical Engineering of Stanford University:[sn], Palo Alto (2011)

    Google Scholar 

  31. Villaroman, N., Rowe, D., Swan, B.: Teaching natural user interaction using OpenNI and the Microsoft Kinect sensor. In: Proceedings of the 2011 Conference on Information Technology Education, SIGITE 2011, pp. 227–232. ACM, New York (2011)

    Google Scholar 

  32. Yeo, H.S., Lee, B.G., Lim, H.: Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware. Multimed. Tools Appl. 74(8), 2687–2715 (2015)

    Article  Google Scholar 

  33. Zennaro, S., Munaro, M., Milani, S., Zanuttigh, P., Bernardi, A., Ghidoni, S., Menegatti, E.: Performance evaluation of the 1st and 2nd generation kinect for multimedia applications. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, June 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Erra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capece, N., Erra, U., Romaniello, G. (2018). A Low-Cost Full Body Tracking System in Virtual Reality Based on Microsoft Kinect. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95282-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95281-9

  • Online ISBN: 978-3-319-95282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics