Skip to main content

Sustainable Environmental Remediation Using NZVI by Managing Benefit-Risk Trade-Offs

  • Chapter
  • First Online:
Nanoscale Zerovalent Iron Particles for Environmental Restoration

Abstract

Ensuring the sustainable development and use of NZVI for in situ remediation requires the incorporation of a multitude of factors and criteria, including those related to technology performance, cost, potential impacts to the environment and human health, as well as ethical, social, and legal concerns. This chapter provides an overview of these factors in order to help guide the sustainable development of NZVI. Among other main results, we find that while there are promising findings regarding its performance and effectiveness as a remediation technique, there are also growing concerns regarding its impacts to the environment and health. To date, most of this research has focused on the potential (eco)toxicological effects of NZVI with limited research on broader issues such as social or ethical implications. In fact, the social implications of NZVI, including the ability for a range of stakeholders and members of the public to be active participants in decision-making processes, have either been minimal or nonexistent. We also find that marketplace limitations appear to be serious obstacles to ensuring the sustainable development and use of NZVI as an environmental remediation technology, including questions pertaining to the validity of its cost-competitiveness. In order to balance the potential benefits, risks, and uncertainty characteristics of NZVI, there are a number of decision support frameworks and risk analysis tools which may be applied, including multi-criteria decision analysis, life cycle assessment, as well as diverse risk characterization or screening tools (e.g., NanoRiskCat). While several of these frameworks and tools may be suited for NZVI in theory, very few of them have been applied to NZVI in practice. In conclusion, these results indicate that while NZVI has potential to reduce environmental contaminants through in situ remediation, its development and use, particularly at field-scale sites, has not proceeded in the most sustainable manner possible thus far. In light of this, we provide specific recommendations to help ensure the sustainable development and use of NZVI, including recommendations specific for diverse stakeholder groups such as researchers, academics, industry, and government officials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour, K., Schulin, R., Schläppi, E., & Flühler, H. (1996). A Bayesian approach for incorporating uncertainty and data worth in environmental projects. Environmental Modeling & Assessment, 1, 151–158.

    Article  Google Scholar 

  • Adams WM (2006) The future of sustainability: Re-thinking environment and development in the twenty-first century. Report of the IUCN Renowned Thinkers Meeting, 29–31 January 2006.

    Google Scholar 

  • Ampiah-Bonney, R. J., Tyson, J. F., & Lanza, G. R. (2007). Phytoextraction of arsenic from soil by Leersia Oryzoides. International Journal of Phytoremediation, 9, 31–40.

    Article  CAS  Google Scholar 

  • An, Y., Li, T., Jin, Z., Dong, M., Xia, H., & Wang, X. (2010). Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresource Technology, 101, 9825–9828.

    Article  CAS  Google Scholar 

  • Auffan, M., Achouak, W., Rose, J., Roncato, M. A., Chanéac, C., Waite, D. T., Masion, A., Woicik, J. C., Wiesner, M. R., & Bottero, J. Y. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science & Technology, 42, 6730–6735.

    Article  CAS  Google Scholar 

  • Back, P. E. (2007). A model for estimating the value of sampling programs and the optimal number of samples for contaminated soil. Environmental Geology, 52, 573–585.

    Article  Google Scholar 

  • Back, P., Rosén, L., & Norberg, T. (2007). Value of information analysis in remedial investigations. Ambio, 36, 486–493.

    Article  CAS  Google Scholar 

  • Bardos, P., Nathanail, J., & Pope, B. (2002). General principles for remedial approach selection. Land Contamination and Reclamation, 10, 137–160.

    Article  Google Scholar 

  • Bare, J., Hofstetter, P., Pennington, D., & Haes, H. U. (2000). Midpoints versus endpoints: The sacrifices and benefits. The International Journal of Life Cycle Assessment, 5(6), 319–326.

    Article  Google Scholar 

  • Bare, J. C., Norris, G. A., Pennington, D. W., & McKone, T. (2003). TRACI: The tool for the reduction and assessment of chemical and other environmental impacts. Journal of Industrial Ecology, 6(3–4), 49–78.

    Google Scholar 

  • Barnes, R. J., van der Gast, C. J., Riba, O., Lehtovirta, L. E., Prosser, J. I., Dobson, P. J., & Thompson, I. P. (2010). The impact of zero-valent iron nanoparticles on a river water bacterial community. Journal of Hazardous Materials, 184, 73–80.

    Article  CAS  Google Scholar 

  • Belton, V., & Stewart, T. (2011). Multiple criteria decision analysis: An integrated approach. Dordrecht: Kluwer, Academic Publishers.

    Google Scholar 

  • Brouwer, D. H. (2012). Control banding approaches for nanomaterials. Annals of Occupational Hygiene, 56, 506–514.

    Google Scholar 

  • Carlsson, C., Ehrenberg, D., Eklund, P., Fedrizzi, M., Gustafsson, P., Lindholm, P., Merkuryeva, G., Riissanen, T., & Ventre, A. (1992). Consensus in distributed soft environments. European Journal of Operational Research, 61, 165–185.

    Article  Google Scholar 

  • Chang, M., & Kang, H. (2009). Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Journal of Environmental Science and Health, 44, 576–582.

    Article  CAS  Google Scholar 

  • Chen, P. J., Su, C. H., Tseng, C. Y., Tan, S. W., & Cheng, C. H. (2011a). Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Marine Pollution Bulletin, 63, 339–346.

    Article  CAS  Google Scholar 

  • Chen, J., Xiu, Z., Lowry, G. C., & Alvarez, P. J. J. (2011b). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45, 1995–2001.

    Article  CAS  Google Scholar 

  • Chen, P. J., Wu, W. L., & Wu, K. C. (2013). The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Research, 47, 3899–3909.

    Article  CAS  Google Scholar 

  • Cox, L. (1999). Adaptive spatial sampling of contaminated soil. Risk Analysis, 19, 1059–1069.

    Article  Google Scholar 

  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211-212, 112–125.

    Article  CAS  Google Scholar 

  • Crimi, M. L., & Siegrist, R. L. (2003). Geochemical effects on metals following permanganate oxidation of DNAPLs. Ground Water, 41, 458–469.

    Article  CAS  Google Scholar 

  • Critto, A., Cantarella, L., Carlon, C., Giove, S., Petruzze, G., & Marcomini, A. (2006). Decision support-oriented selection of remediation technologies to rehabilitate contaminated sites. Integrated Environmental Assessment and Management, 2, 273–285.

    Google Scholar 

  • Cullen, L. G., Tilston, E. L., Mitchell, G. R., Collins, C. D., & Shaw, L. J. (2011). Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere, 82, 1675–1682.

    Article  CAS  Google Scholar 

  • Dakins, M. E., Toll, J. E., Small, M. J., & Brand, K. P. (1996). Risk-based environmental remediation: Bayesian Monte Carlo analysis and the expected value of sample information. Risk Analysis, 16, 67–79.

    Article  CAS  Google Scholar 

  • Danish Ministry of the Environment. (2011). NanoRiskCat-a conceptual decision support tool for nanomaterials. Copenhagen, Denmark, 269 pp.

    Google Scholar 

  • Davis, M., Long, T. C., Shatkin, J. A., Wang, A., Graham, J. A., Gwinn, M., & Ranalli, B. (2010). Comprehensive environmental assessment. Nanomaterial case studies: Nanoscale titanium dioxide in water treatment and in topical sunscreen. U.S. Environmental Protection Agency (USEPA).

    Google Scholar 

  • DEFRA. (2011). A risk/benefit approach to the application of iron nanoparticles. U.K. Department for Environment, Food and Rural Affairs.

    Google Scholar 

  • Delgado, A., Kjølberg, K. L., & Wickson, F. (2011). Public engagement coming of age: From theory to practice in STS encounters with nanotechnology. Public Understanding of Science, 20(6), 826–845.

    Article  Google Scholar 

  • Design for Sustainability Program. (2001). IdeMat Online. Delft: Delft University of Technology.

    Google Scholar 

  • Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Research, 43, 5243–5251.

    Article  CAS  Google Scholar 

  • Dillard, J., Dujon, V., & King, M. C. (2009). Understanding the social dimension of sustainability. New York: Routledge.

    Google Scholar 

  • Dreyer, L. C., Niemann, A. L., & Hauschild, M. Z. (2003). Comparison of three different LCIA methods: EDIP97, CML2001 and eco-indicator 99. International Journal of Life Cycle Analysis, 8(4), 191–200.

    Article  CAS  Google Scholar 

  • Duuren-Stuurman, B., Vink, S., Brouwer, D., Kroese, D., Heussen, H., Verbist, K., Telemans, E., Niftrik, M. V., & Fransman, W. (2011). Stoffenmanager nano: Description of the conceptual control banding model. Zeist: Netherlands Organisation for Applied Scientific Research (TNO).

    Google Scholar 

  • Edmiston, P. L., Osborne, C., Reinbold, K. P., Pickett, D. C., & Underwood, L. A. (2011). Pilot scale testing composite swellable organosilica nanoscale zero-valent iron—Iron-Osorb®—For in situ remediation of trichloroethylene. Remediation Winter, 22, 105–123.

    Article  Google Scholar 

  • Eisenberg, D., Grieger, K. D., Hristozov, D., Bates, M., & Linkov, I. (2015). Risk assessment, life cycle assessment, and decision methods for nanomaterials. In Nanomaterials in the Environment. Reston: American Society of Civil Engineers.

    Google Scholar 

  • Elkington, J. (1997). Cannibals with forks: The triple bottom line of 21st century business. Oxford: Capstone Publishing.

    Google Scholar 

  • Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35, 4922–4926.

    Article  CAS  Google Scholar 

  • El-Temsah, Y. S., & Joner, E. J. (2012a). Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (NZVI) in soil. Chemosphere, 89, 76–82.

    Article  CAS  Google Scholar 

  • El-Temsah, Y. S., & Joner, E. J. (2012b). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27, 42–49.

    Article  CAS  Google Scholar 

  • El-Temsah, Y. S., & Joner, E. J. (2013). Effects of nano-sized zero-valent iron (NZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere, 92, 131–137.

    Article  CAS  Google Scholar 

  • Environmental Defense (ED) and Dupont. (2007a). Nano risk framework. Washington DC: Environmental Defense – Dupont Nano Partnership.

    Google Scholar 

  • Environmental Defense (ED) and Dupont. (2007b). Nanomaterial risk assessment worksheet: DuPont light stabilizer for use as a polymer additive. Washington DC: Environmental Defense – Dupont Nano Partnership.

    Google Scholar 

  • Environmental Defense (ED) and Dupont. (2007c). Nanomaterial risk assessment worksheet: Incorporation of single and multiwalled carbon nano tubes (CNTs) into polymer nanocomposites by melt processing. Washington DC: Environmental Defense – Dupont Nano Partnership.

    Google Scholar 

  • Environmental Defense (ED) and Dupont. (2007d). Nanomaterial risk assessment worksheet: Zero valent nano sized iron nanoparticles (NZVI) for environmental remediation. Washington DC: Environmental Defense – Dupont Nano Partnership.

    Google Scholar 

  • Fajardo, C., Ortíz, L. T., Rodríguez-Membibre, M. L., Nande, M., Lobo, M. C., & Martin, M. (2012). Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere, 86, 802–808.

    Article  CAS  Google Scholar 

  • Fajardo, C., Saccà, M. L., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2013). Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (NZVI) particles. Chemosphere, 93, 1077–1083.

    Article  CAS  Google Scholar 

  • Freeze, R. A., James, B., Massmann, J., Sperling, T., & Smith, L. (1992). Hydrogeological decision analysis: 4. The concept of data worth and its use in the development of site investigation strategies. Ground Water, 30, 574–588.

    Article  CAS  Google Scholar 

  • Friis, A. K., Heron, G., Albrechtsen, H. J., Udell, K. S., & Bjerg, P. L. (2006). Anaerobic dechlorination and redox activities after full-scale electrical resistance heating (ERH) of a TCE-contaminated aquifer. Journal of Contaminant Hydrology, 88, 219–234.

    Article  CAS  Google Scholar 

  • Frischknecht, R., & Jungbluth, N. (2004). SimaPro database manual. The ETH-ESU 96 Libraries version 2.1. ESU-services.

    Google Scholar 

  • Ghauch, A. (2008). Rapid removal of flutriafol in water by zero-valent iron powder. Chemosphere, 71, 816–826.

    Article  CAS  Google Scholar 

  • Giove, S., Brancia, A., Satterstrom, F. K., & Linkov, I. (2009). Decision support systems and environment: Role of MCDA. In A. Marcomini, G. W. Suter II, & A. Critto (Eds.), Decision support systems for risk-based management of contaminated sites. Boston: Springer, US.

    Google Scholar 

  • Grieger, K., Hansen, S. F., & Baun, A. (2009). The known unknowns of nanomaterials: Describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology, 3(3), 1–12.

    Article  CAS  Google Scholar 

  • Grieger, K., Wickson, F., Andersen, H. B., & Renn, O. (2012a). Improving risk governance of emerging technologies through public engagement: The neglected case of nano-remediation? International Journal of Emerging Technologies and Society, 10, 61–78.

    Google Scholar 

  • Grieger, K., Linkov, I., Hansen, S. F., & Baun, A. (2012b). Environmental risk analysis for nanomaterials: Review and evaluation of frameworks. Nanotoxicology, 6(2), 196–212.

    Article  Google Scholar 

  • Grieger, K., Laurent, A., Miseljic, M., Christensen, F., Baun, A., & Olsen, S. (2012c). Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: Have lessons been learned from previous experience with chemicals? Journal of Nanoparticle Research, 14(7), 1–23.

    Article  CAS  Google Scholar 

  • Grieger, K., Fjordbøge, A., Hartmann, N. B., Eriksson, E., Bjerg, P. L., & Baun, A. (2010a). Environmental benefits and risks of zero-valent iron nanoparticles (NZVI) for in situ remediation: Risk mitigation or trade-off? Journal of Contaminant Hydrology, 118, 165–183.

    Article  CAS  Google Scholar 

  • Grieger, K., Baun, A., & Owen, R. (2010b). Redefining risk research priorities for nanomaterials. Journal of Nanoparticle Research, 2(2), 383–392.

    Article  Google Scholar 

  • Hansen, S. F., Jensen, K. A., & Baun, A. (2014). NanoRiskCat: A conceptual tool for categorization and communication of exposure potentials and hazard of nanomaterials in consumer products. Journal of Nanoparticle Research, 16, 2195.

    Article  CAS  Google Scholar 

  • Hauschild, M. Z. (2005). Assessing environmental impacts in a life-cycle perspective. Environmental Science & Technology, 39(4), 81A–88A.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44, 2360–2370.

    Article  CAS  Google Scholar 

  • Higgins, M. R., & Olson, T. M. (2009). Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Environmental Science & Technology, 43(24), 9432–9438.

    Article  CAS  Google Scholar 

  • Höck, J., Epprecht, T., Hofmann, H., Höhner, K., Krug, H., Lorenz, C., Limbach, L., Gehr, P., Nowack, B., Riediker, M., Schirmer, K., Schmid, B., Som, C., Stark, W., Studer, C., Ulrich, A., Götz, N. V., Wengert, S., & Wick, P. (2010). Guidelines on the precautionary matrix for synthetic nanomaterials. Federal Office of Public Health and Federal Office for the Environment.

    Google Scholar 

  • Höck J., Behra R., Bergamin L., Bourqui-Pittet M., Bosshard C., Epprecht T., Furrer V., Frey S., Gautschi M., Hofmann H., Höhener K., Hungerbühler K., Knauer K., Krug H., Limbach L., Gehr P., Nowack B., Riediker M., Schirmer K., Schmid K., Som C., Stark W., Suarez Merino B., Ulrich A., von Götz N., Walser T., Wengert S., Wick P., Studer C.: Guidelines on the Precautionary Matrix for Syn-thetic Nanomaterials. Federal Office of Public Health and Federal Office for the Environment, Berne 2018, Version 3.1

    Google Scholar 

  • Hoehener, K., & Hoeck, J. (2013). Deliverable D2.6 draft (m30) consolidated framework for EHS of manufactured nanomaterials. ERA-NET SIINN; safe implementation of innovative nanoscience and nanotechnology.

    Google Scholar 

  • Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 409, 3578–3594.

    Article  CAS  Google Scholar 

  • Institute of Environmental Sciences. (2012). CMLCA software program. Leiden University, RA Leiden, The Netherlands

    Google Scholar 

  • International Organization for Standardization (ISO). (2006). ISO 14040:2006, Environmental management, life cycle assessment – Principles and framework.

    Google Scholar 

  • James, B. R., & Gorelick, S. M. (1994). When enough is enough: The worth of monitoring data in aquifer remediation design. Water Resources Research, 30, 3499–3513.

    Article  CAS  Google Scholar 

  • Jeon, J. R., Murugesan, K., Nam, I. H., & Chang, Y. S. (2013). Coupling microbial catabolic actions with abiotic redox processes: A new recipe for persistent organic pollutant (POP) removal. Biotechnology Advances, 31, 246–256.

    Article  CAS  Google Scholar 

  • Jiamjitrpanich, W., Parkpian, P., Polprasert, C., Laurent, F., & Kosanlavit, R. (2012). The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and NZVI-contaminated soil. Journal of Environmental Science and Health, 47, 1506–1513.

    Article  CAS  Google Scholar 

  • Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324–330.

    Article  Google Scholar 

  • Kadar, E., Dyson, O., Handy, R. D., & Al-Subiai, S. N. (2013). Are reproduction impairments of free spawning marine invertebrates exposed to zero-valent nano-iron associated with dissolution of nanoparticles? Nanotoxicology, 7, 135–143.

    Article  CAS  Google Scholar 

  • Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 17(12), 1823–1831.

    Google Scholar 

  • Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science & Technology, 43, 4555–4560.

    Article  CAS  Google Scholar 

  • Keller, A. A., Garner, K., Miller, R. J., & Lenihan, H. S. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One, 7(8), e43983. https://doi.org/10.1371/journal.pone.0043983.

    Article  CAS  Google Scholar 

  • Keum, Y. S., & Li, Q. X. (2005). Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science & Technology, 39, 2280–2286.

    Article  CAS  Google Scholar 

  • Khanna, V., Bakshi, B. R., & Lee, L. J. (2008). Carbon nanofiber production. Journal of Industrial Ecology, 12(3), 394–410.

    Article  CAS  Google Scholar 

  • Kiker, G. A., Bridges, T. S., Varghese, A., Seager, T. P., & Linkov, I. (2005). Application of multicriteria decision analysis in environmental decision making. Integrated Environmental Assessment and Management, 1, 95–108.

    Article  Google Scholar 

  • Kim, L. Y., Changha, L., Love, D. C., Sedlak, D. L., Yoon, J., & Nelson, K. L. (2011). Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environmental Science & Technology, 45, 6978–6984.

    Article  CAS  Google Scholar 

  • Kim, H. J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2009). Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environmental Science & Technology, 43, 3824–3830.

    Article  CAS  Google Scholar 

  • Kirschling, T., Gregory, K., Minkley, N., Lowry, G., & Tilton, R. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations. Environmental Science & Technology, 44, 3474–3480.

    Article  CAS  Google Scholar 

  • Kumar, N., Omoregie, E. O., Rose, J., Masion, A., Lloyd, J. R., Diels, L., & Bastiaens, L. (2013). Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Research, 51, 64–72.

    Article  CAS  Google Scholar 

  • Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science & Technology, 42, 4927–4933.

    Article  CAS  Google Scholar 

  • Lemming, G., Hauschild, M., & Bjerg, P. (2010). Life cycle assessment of soil and groundwater remediation technologies: Literature review. The International Journal of Life Cycle Assessment, 15(1), 115–127.

    Article  CAS  Google Scholar 

  • Lemming, G., Chambon, J. C., Binning, P. B., & Bjerg, P. L. (2012). Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation. Journal of Environmental Management, 112, 392–403.

    Article  CAS  Google Scholar 

  • Li, X. Q., & Zhang, W. X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution x-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111, 6939–6946.

    Article  CAS  Google Scholar 

  • Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., & Jiang, G. (2009). Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety, 72, 684–692.

    Article  CAS  Google Scholar 

  • Li, Z., Greden, K., Alvarez, P., Gregory, K., & Lowry, G. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zero-valent iron (NZVI) to E. coli. Environmental Science & Technology, 44, 3462–3467.

    Article  CAS  Google Scholar 

  • Lien, H. L., Jhuo, Y. S., & Chen, L. H. (2007). Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles. Environmental Engineering Science, 24, 21–30.

    Article  CAS  Google Scholar 

  • Lin, K., Chang, N., & Chuang, T. (2008). Fine structure characterization of zerovalent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater. Science and Technology of Advanced Materials, 9, 025015.

    Article  CAS  Google Scholar 

  • Linkov, I., & Moberg, E. (2012). Multi-criteria decision analysis: Environmental applications and case studies. Boca Raton: CRC Press.

    Google Scholar 

  • Linkov, I., Satterstrom, F. K., Kiker, G., Batchelor, C., Bridges, T., & Ferguson, E. (2006a). From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications. Environment International, 32, 1072–1093.

    Article  CAS  Google Scholar 

  • Linkov, I., Satterstrom, F. K., Kiker, G., Seager, T. P., Bridges, T., Gardner, K. H., Rogers, S. H., Belluck, D. A., & Meyer, A. (2006b). Multicriteria decision analysis: A comprehensive decision approach for management of contaminated sediments. Risk Analysis, 26, 61–78.

    Article  CAS  Google Scholar 

  • Linkov, I., Satterstrom, F., Steevens, J., Ferguson, E., & Pleus, R. (2007). Multi-criteria decision analysis and environmental risk assessment for nanomaterials. Journal of Nanoparticle Research, 9, 543–554.

    Article  Google Scholar 

  • Linkov, I., Loney, D., Cormier, S., Satterstrom, F. K., & Bridges, T. (2009). Weight-of-evidence evaluation in environmental assessment: Review of qualitative and quantitative approaches. Science of the Total Environment, 407(19), 5199–5205.

    Article  CAS  Google Scholar 

  • Linkov, I., Welle, P., Loney, D., Tkachuk, A., Canis, L., Kim, J. B., & Bridges, T. (2011). Use of multicriteria decision analysis to support weight of evidence evaluation. Risk Analysis, 31, 1211–1225.

    Article  Google Scholar 

  • Lloyd, S. M., Lave, L. B., & Matthews, H. S. (2005). Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts. Environmental Science & Technology, 39(5), 1384–1392.

    Article  CAS  Google Scholar 

  • Ma, X., Gurung, A., & Deng, Y. (2013). Phytotoxicity and uptake of nanoscale zero-valent iron (NZVI) by two plant species. Science of the Total Environment, 443, 844–849.

    Article  CAS  Google Scholar 

  • Marsalek, B., Jancula, D., Marsalkova, E., Mashlan, M., Safarova, K., Tucek, J., & Zboril, R. (2012). Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environmental Science & Technology, 46, 2316–2323.

    Article  CAS  Google Scholar 

  • Mueller, N. C., Braun, J., Bruns, J., ČernÍk, R. P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19, 550–558.

    Article  CAS  Google Scholar 

  • Müller, N.C., & Nowack, B. (2010). Nano zero valent iron – THE solution for water and soil remediation? ObservatoryNANO focus report.

    Google Scholar 

  • Nadagouda, M. N., Castle, A. B., Murdock, R. C., Hussain, S. M., & Varma, R. S. (2010). In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chemistry, 12, 114–122.

    Article  CAS  Google Scholar 

  • National Renewable Energy Laboratory. (2012). U.S. life cycle inventory database. Golden, CO, USA

    Google Scholar 

  • O’Carroll, D. M., Sleep, B. E., Karol, M., Boparai, H. K., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.

    Article  CAS  Google Scholar 

  • Onwubuya, K., Cundy, A., Puschenreiter, M., Kumpiene, J., Bone, B., Greaves, J., Teasdale, P., Mench, M., Tlustos, P., Mikhalovsky, S., Waite, S., Friesl-Hanl, W., Marschner, B., & Müller, I. (2009). Developing decision support tools for the selection of “gentle” remediation approaches. Science of the Total Environment, 407, 6132–6142.

    Article  CAS  Google Scholar 

  • Oracle. (2008). Oracle crystal ball. The Decision Table Tool.

    Google Scholar 

  • Osterwalder, N., Capello, C., Hungerbühler, K., & Stark, W. (2006). Energy consumption during nanoparticle production: How economic is dry synthesis? Journal of Nanoparticle Research, 8(1), 1–9.

    Article  CAS  Google Scholar 

  • Ostiguy, C., Riediker, M., Triolet, J., Troisfontaines, P., & Vernez, D. (2010). Development of a specific control banding tool for nanomaterials. French Agency for Food, Environmental and Occupational Health & Safety.

    Google Scholar 

  • Otero-González, L., García-Saucedo, C., Field, J. A., & Sierra-Álvarez, R. (2013). Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere, 93, 1201–1206.

    Article  CAS  Google Scholar 

  • Paik, S. Y., Zalk, D. M., & Swuste, P. (2008). Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Annals of Occupational Hygiene, 52, 419–428.

    CAS  Google Scholar 

  • Palisade Corporation. (2010). @Risk Industrial. Risk analysis software. ITHACA, NY, USA

    Google Scholar 

  • Pawlett, M., Ritz, K., Dorey, R. A., Rocks, S., Ramsden, J., & Harris, J. A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research International, 20, 1041–1049.

    Article  CAS  Google Scholar 

  • PE International. (2011). GaBi 5. Life cycle assessment modeling software. Leinfelden-Echterdingen, Germany

    Google Scholar 

  • Phenrat, T., Long, T. C., Lowry, G. V., & Veronesi, B. (2009). Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environmental Science & Technology, 43, 195–200.

    Article  CAS  Google Scholar 

  • Phenrat, T., Fagerlund, F., Illanagasekare, T., Lowry, G. V., & Tilton, R. D. (2011). Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: Effect ofparticle concentration, NAPL saturation, and injection strategy. Environmental Science & Technology, 45, 6102–6109.

    Article  CAS  Google Scholar 

  • PRé Consultants. (2000). Eco-indicator 99. A damage oriented method for life cycle impact assessment.

    Google Scholar 

  • PRé Consultants. (2013). SimaPro 8. LCA software.

    Google Scholar 

  • Riediker, M., Ostiguy, C., Triolet, J., Troisfontaine, P., Vernez, D., Bourdel, G., Thieriet, N., & Cadene, A. (2012). Development of a control banding tool for nanomaterials. Journal of Nanomaterials, 2012, 8.

    Article  CAS  Google Scholar 

  • Sacca, M. L., Fajardo, C., Costa, G., Lobo, C., Nande, M., & Martin, M. (2013a). Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (NZVI) on soil organisms. Chemosphere, 104, 184–189.

    Article  CAS  Google Scholar 

  • Sacca, M. L., Fajardo, C., Nande, M., & Martin, M. (2013b). Effects of nano zero-valent iron on klebsiella oxytoca and stress response. Environmental Microbiology, 66, 806–812.

    CAS  Google Scholar 

  • Saleh, N., Kim, H., Phenrat, T., Matyjaszewksi, K., Lowry, G. V., & Tilton, R. D. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.

    Article  CAS  Google Scholar 

  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.

    Article  CAS  Google Scholar 

  • Sexton, K., & Linder, S. H. (2014). Integrated assessment of risk and sustainability in the context of regulatory decision making. Environmental Science & Technology, 48, 1409–1418.

    Article  CAS  Google Scholar 

  • Shah, V., Dobiasova, P., Baldrian, P., Nerud, F., Kumar, A., & Seal, S. (2010). Influence of iron and copper NP powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. Journal of Hazardous Materials, 178, 1141–1145.

    Article  CAS  Google Scholar 

  • Shatkin, J. A. (2008). Nanotechnology: Health and environmental risks. Boca Raton: Taylor & Francis.

    Book  Google Scholar 

  • Shatkin, J. A. (2009a). Investigating the life-cycle risks of a nanomaterial in a coating using nano LCRA. Society for risk analysis annual meeting. Symposium M4-I, Baltimore.

    Google Scholar 

  • Shatkin, J. A. (2009b). Risk analysis for nanotechnology: State of the science and implications. Washington, DC: US Department of Agriculture.

    Google Scholar 

  • Soratana, K., & Marriott, J. (2010). Increasing innovation in home energy efficiency: Monte Carlo simulation of potential improvements. Energy and Buildings, 42(6), 828–833.

    Article  Google Scholar 

  • Soratana, K., Harper, W. F., & Landis, A. E. (2012). Microalgal biodiesel and the renewable fuel standard's greenhouse gas requirement. Energy Policy, 46(0), 498–510.

    Article  CAS  Google Scholar 

  • Soratana, K., Khanna, V., & Landis, A. E. (2013). Re-envisioning the renewable fuel standard to minimize unintended consequences: A comparison of microalgal diesel with other biodiesels. Applied Energy, 112(0), 194–204.

    Article  CAS  Google Scholar 

  • Stephenson, J. B. (2010). EPA’s estimated costs to remediate existing sites exceed current funding levels, and more sites are expected to be added to the National Priorities List. US Government Accountability Office. http://www.gao.gov/products/GAO-10-380

  • Suttinun, O., Luepromchai, E., & Müller, R. (2013). Cometabolism of trichloroethylene: Concepts, limitations and available strategies for sustained biodegradation. Reviews in Environmental Science and Biotechnology, 12, 99–114.

    Article  CAS  Google Scholar 

  • Technical University of Denmark. (2003). Environmental design of industrial products (EDIP) 2003. Lyngby, Denmark

    Google Scholar 

  • The Centre for Life Cycle Inventories. (2014). Swiss center for life cycle inventories. Ecoinvent Version 3.

    Google Scholar 

  • The National Institute for Public Health and the Environment (RIVM), Institute of Environmental Sciences (CML), PRé Consultants, Nijmegen, R. U. (2008). ReCiPe. Life cycle impact assessment methodology.

    Google Scholar 

  • The Royal Society and The Royal Academy of Engineering. (2004). Nanoscience and nanotechnologies: Opportunities and uncertainties- two year review of progress on government actions. Joint academies’ response to the council for science and technology’s call for evidence, London.

    Google Scholar 

  • Theron, J., Walker, J. A., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology, 34, 43–69.

    Article  CAS  Google Scholar 

  • Tilston, E. L., Collins, C. D., Mitchell, G. R., Princivalle, J., & Shaw, L. J. (2013). Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environmental Pollution, 173, 38–46.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.

    Article  Google Scholar 

  • United States Environmental Protection Agency (US EPA). (2005). US EPA workshop on nanotechnology for site remediation. Washington, DC: US EPA.

    Google Scholar 

  • US EPA. (2010). Nanomaterial case studies. Nanoscale titanium dioxide in water treatment and topical sunscreen (final), Research Triangle Park.

    Google Scholar 

  • US EPA. (2012a). Nanomaterial case study. A comparison of multiwalled carbon nanotube and decabromodiphenyl ether flame-retardant coatings applied to upholstery textiles (draft), Research Triangle Park.

    Google Scholar 

  • US EPA. (2012b). Nanomaterial case study: Nanoscale silver in disinfectant spray (final report), Washington, DC.

    Google Scholar 

  • US EPA. (2013). Technology innovation and field services division. http://www.epa.gov/superfund/partners/osrti/tifsd.htm

  • US EPA Office of Solid Waste and Emergency Response (OSWER). (2013). The project on emerging nanotechnologies: Selected sites using or testing nanoparticles for remediation. www.cluin.org/download/remed/nano-site-list.pdf

  • Utterback, J. M. (1987). Innovation and industrial evolution in manufacturing industries. In B. R. Guile & H. Brooks (Eds.), Technology and global industry: Companies and nations in the world economy (pp. 16–48). Washington: National Academic Press.

    Google Scholar 

  • Utterback, J. M., & Suarez, F. F. (1993). Innovation, competition, and industry structure. Research Policy, 22(1), 1–21.

    Article  Google Scholar 

  • van Duuren-Stuurman, B., Vink, S. R., Verbist, K. J. M., Heussen, H. G. A., Brouwker, D. H., Lroese, D. E. D., van Niftrik, M. F. J., Tielemans, E., & Fransman, W. (2011). Stoffenmanager nano: Description of the conceptual control banding model. Zeist: Netherlands Organisation for Applied Scientific Research (TNO).

    Google Scholar 

  • van Duuren-Stuurman, B., Vink, S. R., Verbist, K. J. M., Heussen, H. G. A., Brouwker, D. H., Lroese, D. E. D., van Niftrik, M. F. J., Tielemans, E., & Fransman, W. (2012). Stoffenmanager nano version 1.0: Web-based tool for risk prioritization of airborne manufactured nano objects. The Annals of Occupational Hygiene, 56(5), 525–541.

    Google Scholar 

  • Vegter, J., Lowe, J., & Kasamas, H. (2002). Sustainable management of contaminated land: An overview. Austrian Federal Environment Agency on behalf of CLARINET.

    Google Scholar 

  • Wender, B. (2013). LCA and responsible innovation of nanotechnology. In School of Sustainable Engineering and the Built Environment, Master of science. Tempe: Arizona State University.

    Google Scholar 

  • Wickson, F., Gillund, F., & Myhr, A. (2010). Treating nanoparticles with precaution: Recognising qualitative uncertainty in scientific risk assessment. In K. Kjølberg & F. Wickson (Eds.), Nano meets macro (pp. 445–472). Singapore: Pan Stanford Publishing.

    Chapter  Google Scholar 

  • Wiesner, M. R., & Bottero, J. Y. (2011). A risk forecasting process for nanostructured materials, and nanomanufacturing. Comptes Rendus Physique, 12, 659–668.

    Article  CAS  Google Scholar 

  • Woller, J. (1996). The basic of Monte Carlo simulations. Lincoln: University of Nebraska-Lincoln Physical Chemistry Lab.

    Google Scholar 

  • Woodrow Wilson International Center for Scholars. (2014). Project on emerging nanotechnologies. http://www.nanotechproject.org/inventories/remediation_map/

  • Wu, D., Shen, Y., Ding, A., Mahmood, Q., Liu, S., & Tu, Q. (2013). Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge. Environmental Technology, 34, 2663–2669.

    Article  CAS  Google Scholar 

  • Xiu, Z., Jin, Z., Li, T., Mahendra, S., Lowry, G. V., & Alvarez, P. J. J. (2010). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology, 101, 1141–1146.

    Article  CAS  Google Scholar 

  • Yan, W., Lien, H. L., Koel, B. E., & Zhang, W. X. (2013). Iron nanoparticles for environmental clean-up: Recent developments and future outlook. Environ Sci. Processes Impacts, 15, 63–77.

    Article  CAS  Google Scholar 

  • Yang, Y., Guo, J., & Hu, Z. (2013). Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Research, 47, 6790–6800.

    Article  CAS  Google Scholar 

  • Zhou, L., Thanh, T. L., Gong, J., Kim, J. H., Kim, E. J., & Chang, Y. S. (2013). Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere, 104, 155–161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khara Grieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grieger, K. et al. (2019). Sustainable Environmental Remediation Using NZVI by Managing Benefit-Risk Trade-Offs. In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_15

Download citation

Publish with us

Policies and ethics