Skip to main content

Nanoscale Zerovalent Iron Particles for Treatment of Metalloids

  • Chapter
  • First Online:
Nanoscale Zerovalent Iron Particles for Environmental Restoration

Abstract

In the past few decades, the remediation ability of nanoscale zerovalent iron (NZVI) particles has been exploited in both lab-scale and real-world scenarios. These studies and application examples brought about numerous breakthrough results. Therefore, NZVI has proved to be an excellent candidate for the efficient remediation of even challenging and complicated polluted aqueous systems. Herein, we emphasize the treatment of heavy metals (e.g., copper, cobalt, nickel, zinc, uranium, mercury, cadmium, lead, etc., and also hexavalent chromium) and metalloids (e.g., arsenic) as pollutants in water by NZVI. The mechanisms involved in the metal removal by NZVI are described and explained in terms of selectivity and reaction pathways. Analytical aspects, mainly represented by X-ray photoelectron spectroscopy as tool for deep understanding of the mechanism of metal removal, are mentioned, while an extensive report of examples of metal cations that can be removed by NZVI is overviewed. Specifically, the cases of chromium and arsenic removal are analyzed thoroughly, explaining the efficiency of various NZVI-based systems for immobilization and/or reduction of such toxic species. Finally, success stories of pilot and full-scale tests where NZVI was employed for metal removal are presented, describing the conditions, the effects, and the advantages of NZVI in large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency U.S.E.P. (2001). Drinking water arsenic rule history.

    Google Scholar 

  • Agency U.S.E.P. (2015). Chromium in drinking water.

    Google Scholar 

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., Imam, M. B., Khan, A. A., & Sracek, O. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200.

    Article  CAS  Google Scholar 

  • Alessi, D. S., & Li, Z. (2001). Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. Environmental Science & Technology, 35, 3713–3717.

    Article  CAS  Google Scholar 

  • Almeelbi, T., & Bezbaruah, A. (2012). Aqueous phosphate removal using nanoscale zero-valent iron. Journal of Nanoparticle Research, 14, 900.

    Article  CAS  Google Scholar 

  • Arshadi, M., Soleymanzadeh, M., Salvacion, J. W. L., & SalimiVahid, F. (2014). Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: Kinetics, thermodynamic and mechanism. Journal of Colloid and Interface Science, 426, 241–251.

    Article  CAS  Google Scholar 

  • Baikousi, M., Bourlinos, A. B., Douvalis, A., Bakas, T., Anagnostopoulos, D. F., Tuček, J., Šafářová, K., Zboril, R., & Karakassides, M. A. (2012). Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in removal of hexavalent chromium ions from aqueous solutions. Langmuir, 28, 3918–3930.

    Article  CAS  Google Scholar 

  • Baikousi, M., Georgiou, Y., Daikopoulos, C., Bourlinos, A. B., Filip, J., Zbořil, R., Deligiannakis, Y., & Karakassides, M. A. (2015). Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 93, 636–647.

    Article  CAS  Google Scholar 

  • Bang, S., Johnson, M. D., Korfiatis, G. P., & Meng, X. (2005). Chemical reactions between arsenic and zero-valent iron in water. Water Research, 39, 763–770.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., Martin, R. A., Storniolo, A. D. R., & Thir, J. M. (2006). Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358, 97–120.

    Article  CAS  Google Scholar 

  • Bhaumik, M., Choi, H. J., McCrindle, R. I., & Maity, A. (2014). Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: High performance for water treatment applications. Journal of Colloid and Interface Science, 425, 75–82.

    Article  CAS  Google Scholar 

  • Biesinger, M. C., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2010). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 257, 887–898.

    Article  CAS  Google Scholar 

  • Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257, 2717–2730.

    Article  CAS  Google Scholar 

  • Birkle, P., Bundschuh, J., & Sracek, O. (2010). Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. Water Research, 44, 5605–5617.

    Article  CAS  Google Scholar 

  • Biterna, M., Arditsoglou, A., Tsikouras, E., & Voutsa, D. (2007). Arsenate removal by zero valent iron: Batch and column tests. Journal of Hazardous Materials, 149, 548–552.

    Article  CAS  Google Scholar 

  • Briggs, D. (1998). Surface analysis of polymers by XPS and static SIMS. Cambridge University Press.

    Google Scholar 

  • Bruzzoniti, M. C., & Fiore, S. (2014). Removal of inorganic contaminants from aqueous solutions: Evaluation of the remediation efficiency and of the environmental impact of a zero-valent Iron substrate. Water, Air, & Soil Pollution, 225, 2098.

    Article  CAS  Google Scholar 

  • Chen, L.-H., Huang, C.-C., & Lien, H.-L. (2008). Bimetallic iron–aluminum particles for dechlorination of carbon tetrachloride. Chemosphere, 73, 692–697.

    Article  CAS  Google Scholar 

  • Costa, M. (2003). Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology, 188, 1–5.

    Article  CAS  Google Scholar 

  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212, 112–125.

    Article  CAS  Google Scholar 

  • Dai, Y., Hu, Y., Jiang, B., Zou, J., Tian, G., & Fu, H. (2016). Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction. Journal of Hazardous Materials, 309, 249–258.

    Article  CAS  Google Scholar 

  • Dickinson, M., & Scott, T. B. (2010). The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. Journal of Hazardous Materials, 178, 171–179.

    Article  CAS  Google Scholar 

  • Dong, H., He, Q., Zeng, G., Tang, L., Zhang, C., Xie, Y., Zeng, Y., Zhao, F., & Wu, Y. (2016). Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry. Journal of Colloid and Interface Science, 471, 7–13.

    Article  CAS  Google Scholar 

  • Dorjee, P., Amarasiriwardena, D., & Xing, B. (2015). Erratum to “Antimony adsorption by zero-valent iron nanoparticles (NZVI): Ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) study” [Microchem. J. 116 (2014) 15–23]. Microchemical Journal, 118, 278.

    Article  CAS  Google Scholar 

  • Drahota, P., & Filippi, M. (2009). Secondary arsenic minerals in the environment: A review. Environment International, 35, 1243–1255.

    Article  CAS  Google Scholar 

  • Dries, J., Bastiaens, L., Springael, D., Agathos, S. N., & Diels, L. (2005). Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environmental Science & Technology, 39, 8460–8465.

    Article  CAS  Google Scholar 

  • Eglal, M. M., & Ramamurthy, A. S. (2014). Nanofer ZVI: Morphology, particle characteristics, kinetics, and applications. Journal of Nanomaterials, 2014, 11.

    Article  CAS  Google Scholar 

  • Farrell, J., Wang, J., O’Day, P., & Conklin, M. (2001). Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environmental Science & Technology, 35, 2026–2032.

    Article  CAS  Google Scholar 

  • Fiedor, J. N., Bostick, W. D., Jarabek, R. J., & Farrell, J. (1998). Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environmental Science & Technology, 32, 1466–1473.

    Article  CAS  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y.-W. (2002). Antimony in the environment: A review focused on natural waters: I. Occurrence. Earth-Science Reviews, 57, 125–176.

    Article  CAS  Google Scholar 

  • Filip, J., Karlický, F., Marušák, Z., Lazar, P., Černík, M., Otyepka, M., & Zbořil, R. (2014). Anaerobic reaction of nanoscale zerovalent Iron with water: Mechanism and kinetics. The Journal of Physical Chemistry C, 118, 13817–13825.

    Article  CAS  Google Scholar 

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267, 194–205.

    Article  CAS  Google Scholar 

  • Gheju, M. (2011). Hexavalent chromium reduction with Zero-Valent Iron (ZVI) in aquatic systems. Water, Air, & Soil Pollution, 222, 103–148.

    Article  CAS  Google Scholar 

  • Gieré, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359.

    Article  CAS  Google Scholar 

  • Gottinger, A. M., Wild, D. J., McMartin, D., Moldovan, B., & Wang, D. (2010). Development of an Iron-amended biofilter for removal of arsenic from rural Canadian prairie potable water. In C. A. Brebbia & A. M. Marinov (Eds.), Water pollution X (pp. 333–344). WIT.

    Google Scholar 

  • Gräfe, M., Beattie, D. A., Smith, E., Skinner, W. M., & Singh, B. (2008). Copper and arsenate co-sorption at the mineral–water interfaces of goethite and jarosite. Journal of Colloid and Interface Science, 322, 399–413.

    Article  CAS  Google Scholar 

  • Gu, Z., Deng, B., & Yang, J. (2007). Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption. Microporous and Mesoporous Materials, 102, 265–273.

    Article  CAS  Google Scholar 

  • Guo, X., Yang, Z., Dong, H., Guan, X., Ren, Q., Lv, X., & Jin, X. (2016). Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water. Water Research, 88, 671–680.

    Article  CAS  Google Scholar 

  • Gupta, A., Yunus, M., & Sankararamakrishnan, N. (2012). Zerovalent iron encapsulated chitosan nanospheres – A novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. Chemosphere, 86, 150–155.

    Article  CAS  Google Scholar 

  • Han, W., Fu, F., Cheng, Z., Tang, B., & Wu, S. (2016). Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater. Journal of Hazardous Materials, 302, 437–446.

    Article  CAS  Google Scholar 

  • Huang, Y. H., Tang, C., & Zeng, H. (2012). Removing molybdate from water using a hybridized zero-valent iron/magnetite/Fe(II) treatment system. Chemical Engineering Journal, 200–202, 257–263.

    Article  CAS  Google Scholar 

  • Huang, D.-L., Chen, G.-M., Zeng, G.-M., Xu, P., Yan, M., Lai, C., Zhang, C., Li, N.-J., Cheng, M., He, X.-X., & He, Y. (2015). Synthesis and application of modified zero-valent iron nanoparticles for removal of hexavalent chromium from wastewater. Water, Air, & Soil Pollution, 226, 375.

    Article  CAS  Google Scholar 

  • Hug, S. J., & Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science & Technology, 37, 2734–2742.

    Article  CAS  Google Scholar 

  • Jabeen, H., Chandra, V., Jung, S., Lee, J. W., Kim, K. S., & Kim, S. B. (2011). Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale, 3, 3583–3585.

    Article  CAS  Google Scholar 

  • Jiang, X., Qiao, J., Lo, I. M. C., Wang, L., Guan, X., Lu, Z., Zhou, G., & Xu, C. (2015). Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron. Journal of Hazardous Materials, 283, 880–887.

    Article  CAS  Google Scholar 

  • Kakavandi, B., Kalantary, R. R., Farzadkia, M., Mahvi, A. H., Esrafili, A., Azari, A., Yari, A. R., & Javid, A. B. (2014). Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles. Journal of Environmental Health Science and Engineering, 12, 115.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39, 1291–1298.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Grenèche, J.-M., & Choi, H. (2006). Arsenic(V) removal from groundwater using nano scale zero-valent Iron as a colloidal reactive barrier material. Environmental Science & Technology, 40, 2045–2050.

    Article  CAS  Google Scholar 

  • Karabelli, D., Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Scott, T. B., Hallam, K. R., & Lieberwirth, I. (2008). Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: A study of the capacity and mechanism of uptake. Industrial & Engineering Chemistry Research, 47, 4758–4764.

    Article  CAS  Google Scholar 

  • Kareus, S. A., Kelley, C., Walton, H. S., & Sinclair, P. R. (2001). Release of Cr(III) from Cr(III) picolinate upon metabolic activation. Journal of Hazardous Materials, 84, 163–174.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of Fenton reagent generation and as(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science & Technology, 42, 7424–7430.

    Article  CAS  Google Scholar 

  • Keenan, C. R., & Sedlak, D. L. (2008). Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environmental Science & Technology, 42, 1262–1267.

    Article  CAS  Google Scholar 

  • Klimkova, S., Cernik, M., Lacinova, L., Filip, J., Jancik, D., & Zboril, R. (2011). Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere, 82, 1178–1184.

    Article  CAS  Google Scholar 

  • Kocourková-Víšková, E., Loun, J., Sracek, O., Houzar, S., & Filip, J. (2015). Secondary arsenic minerals and arsenic mobility in a historical waste rock pile at Kaňk near Kutná Hora, Czech Republic. Mineralogy and Petrology, 109, 17–33.

    Article  CAS  Google Scholar 

  • Kumarathilaka, P., Jayaweera, V., Wijesekara, H., Kottegoda, I. R. M., Rosa, S. R. D., & Vithanage, M. (2016). Insights into starch coated nanozero valent iron-graphene composite for Cr(VI) removal from aqueous medium. Journal of Nanomaterials, 2016, 10.

    Article  CAS  Google Scholar 

  • Li, X.-q., & Zhang, W.-x. (2007). Sequestration of metal cations with Zerovalent Iron Nanoparticles A study with high resolution X-ray Photoelectron Spectroscopy (HR-XPS). The Journal of Physical Chemistry C, 111, 6939–6946.

    Article  CAS  Google Scholar 

  • Li, X.-q., Elliott, D. W., & Zhang, W.-x. (2006). Zero-valent Iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 111–122.

    Article  CAS  Google Scholar 

  • Li, X.-q., Cao, J., & Zhang, W.-x. (2008). Stoichiometry of Cr(VI) immobilization using nanoscale Zerovalent Iron (NZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial Engineering Chemistry Research, 47, 2131–2139.

    Article  CAS  Google Scholar 

  • Li, J., Bao, H., Xiong, X., Sun, Y., & Guan, X. (2015a). Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field. Separation and Purification Technology, 151, 276–283.

    Article  CAS  Google Scholar 

  • Li, Z.-J., Wang, L., Yuan, L.-Y., Xiao, C.-L., Mei, L., Zheng, L.-R., Zhang, J., Yang, J.-H., Zhao, Y.-L., Zhu, Z.-T., Chai, Z.-F., & Shi, W.-Q. (2015b). Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. Journal of Hazardous Materials, 290, 26–33.

    Article  CAS  Google Scholar 

  • Li, C., Huang, B., Li, C., Chen, X., & Huang, Y. (2016a). In situ formation of nanoscale zero-value iron on fish-scale-based porous carbon for Cr(VI) adsorption. Water Science and Technology, 73, 2237–2243.

    Article  CAS  Google Scholar 

  • Li, L., Hu, J., Shi, X., Fan, M., Luo, J., & Wei, X. (2016b). Nanoscale zero-valent metals: A review of synthesis, characterization, and applications to environmental remediation. Environmental Science and Pollution Research, 23, 17880–17900.

    Article  CAS  Google Scholar 

  • Li, S., Wang, W., Liang, F., & Zhang, W.-x. (2017). Heavy metal removal using nanoscale zero-valent iron (NZVI): Theory and application. Journal of Hazardous Materials, 322(Part A), 163–171.

    Article  CAS  Google Scholar 

  • Liang, L., Yang, W., Guan, X., Li, J., Xu, Z., Wu, J., Huang, Y., & Zhang, X. (2013). Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Research, 47, 5846–5855.

    Article  CAS  Google Scholar 

  • Liang, L., Sun, W., Guan, X., Huang, Y., Choi, W., Bao, H., Li, L., & Jiang, Z. (2014). Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Research, 49, 371–380.

    Article  CAS  Google Scholar 

  • Liang, Z., Wen, Q., Wang, X., Zhang, F., & Yu, Y. (2016). Chemically stable and reusable nano zero-valent iron/graphite-like carbon nitride nanohybrid for efficient photocatalytic treatment of Cr(VI) and rhodamine B under visible light. Applied Surface Science, 386, 451–459.

    Article  CAS  Google Scholar 

  • Ling, L., & Zhang, W.-X. (2014). Sequestration of arsenate in zero-valent iron nanoparticles: Visualization of Intraparticle reactions at angstrom resolution. Environmental Science & Technology Letters, 1, 305–309.

    Article  CAS  Google Scholar 

  • Liu, T., Wang, Z.-L., Yan, X., & Zhang, B. (2014a). Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron. Chemical Engineering Journal, 245, 34–40.

    Article  CAS  Google Scholar 

  • Liu, W.-J., Qian, T.-T., & Jiang, H. (2014b). Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical Engineering Journal, 236, 448–463.

    Article  CAS  Google Scholar 

  • Liu, T., Wang, Z.-L., & Sun, Y. (2015). Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chemical Engineering Journal, 263, 55–61.

    Article  CAS  Google Scholar 

  • López, D. L., Bundschuh, J., Birkle, P., Armienta, M. A., Cumbal, L., Sracek, O., Cornejo, L., & Ormachea, M. (2012). Arsenic in volcanic geothermal fluids of Latin America. Science of the Total Environment, 429, 57–75.

    Article  CAS  Google Scholar 

  • Ludwig, R. D., Smyth, D. J. A., Blowes, D. W., Spink, L. E., Wilkin, R. T., Jewett, D. G., & Weisener, C. J. (2009). Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB. Environmental Science & Technology, 43, 1970–1976.

    Article  CAS  Google Scholar 

  • Lv, X., Xu, J., Jiang, G., Tang, J., & Xu, X. (2012). Highly active nanoscale zero-valent iron (NZVI)–Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. Journal of Colloid and Interface Science, 369, 460–469.

    Article  CAS  Google Scholar 

  • Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. (2011). Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination, 281, 93–99.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Marshall, G., Ferreccio, C., Yuan, Y., Bates, M. N., Steinmaus, C., Selvin, S., Liaw, J., & Smith, A. H. (2007). Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. JNCI: Journal of the National Cancer Institute, 99, 920–928.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Moraci, N., & Calabrò, P. S. (2010). Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. Journal of Environmental Management, 91, 2336–2341.

    Article  CAS  Google Scholar 

  • Moulder, J. F., & Chastain, J. (1992). Handbook of X-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Division, Perkin-Elmer Corporation.

    Google Scholar 

  • Muthukrishnan, M., & Guha, B. K. (2008). Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination, 219, 171–178.

    Article  CAS  Google Scholar 

  • Němeček, J., Lhotský, O., & Cajthaml, T. (2014). Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Science of the Total Environment, 485–486, 739–747.

    Article  CAS  Google Scholar 

  • Němeček, J., Pokorný, P., Lacinová, L., Černík, M., Masopustová, Z., Lhotský, O., Filipová, A., & Cajthaml, T. (2015). Combined abiotic and biotic in situ reduction of hexavalent chromium in groundwater using NZVI and whey: A remedial pilot test. Journal of Hazardous Materials, 300, 670–679.

    Article  CAS  Google Scholar 

  • Němeček, J., Pokorný, P., Lhotský, O., Knytl, V., Najmanová, P., Steinová, J., Černík, M., Filipová, A., Filip, J., & Cajthaml, T. (2016). Combined nano-biotechnology for in situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Science of the Total Environment, 563–564, 822–834.

    Article  CAS  Google Scholar 

  • Neumann, A., Kaegi, R., Voegelin, A., Hussam, A., Munir, A. K. M., & Hug, S. J. (2013). Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environmental Science & Technology, 47, 4544–4554.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K. (2002). Worldwide occurrences of arsenic in ground water. Science, 296, 2143–2145.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., & Alpers, C. N. (1999). Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proceedings of the National Academy of Sciences, 96, 3455–3462.

    Article  CAS  Google Scholar 

  • O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.

    Article  CAS  Google Scholar 

  • Organization W.H. (2011). Guidelines for drinking-water quality (4th ed.).

    Google Scholar 

  • Pang, S.-Y., Jiang, J., & Ma, J. (2011). Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: Evidence against Ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environmental Science & Technology, 45, 307–312.

    Article  CAS  Google Scholar 

  • Petala, E., Dimos, K., Douvalis, A., Bakas, T., Tucek, J., Zbořil, R., & Karakassides, M. A. (2013). Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 261, 295–306.

    Article  CAS  Google Scholar 

  • Petala, E., Baikousi, M., Karakassides, M. A., Zoppellaro, G., Filip, J., Tucek, J., Vasilopoulos, K. C., Pechousek, J., & Zboril, R. (2016). Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water. Physical Chemistry Chemical Physics, 18, 10637–10646.

    Article  CAS  Google Scholar 

  • Planer-Friedrich, B., Lehr, C., Matschullat, J., Merkel, B. J., Nordstrom, D. K., & Sandstrom, M. W. (2006). Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochimica et Cosmochimica Acta, 70, 2480–2491.

    Article  CAS  Google Scholar 

  • Plant, J. A., Kinniburgh, D. G., Smedley, P. L., Fordyce, F. M., & Klinck, B. A. (2005). Environmental geochemistry. Elsevier, 9, 17–66.

    Google Scholar 

  • Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34, 2564–2569.

    Article  CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L., Shuh, D. K., & Mallouk, T. E. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 13, 479–486.

    Article  CAS  Google Scholar 

  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W.-S., Gavaskar, A., & Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 39, 1309–1318.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: A global synthesis. Chichester: Wiley-Blackwell.

    Book  Google Scholar 

  • Ravikumar, K. V. G., Kumar, D., Kumar, G., Mrudula, P., Natarajan, C., & Mukherjee, A. (2016). Enhanced Cr(VI) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor. Industrial & Engineering Chemistry Research, 55, 5973–5982.

    Article  CAS  Google Scholar 

  • Riba, O., Scott, T. B., Vala Ragnarsdottir, K., & Allen, G. C. (2008). Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochimica et Cosmochimica Acta, 72, 4047–4057.

    Article  CAS  Google Scholar 

  • Richard, F. C., & Bourg, A. C. M. (1991). Aqueous geochemistry of chromium: A review. Water Research, 25, 807–816.

    Article  CAS  Google Scholar 

  • Rodová, A., Filip, J., & Černík, M. (2015). Arsenic immobilization by nanoscale zero-valent iron/Immobilizacja Arsenu Przez Nanożelazo Na Zerowym Stopniu Utlenienia. Ecological Chemistry and Engineering S, 22(1), 45–59.

    Article  CAS  Google Scholar 

  • Salzsauler, K. A., Sidenko, N. V., & Sherriff, B. L. (2005). Arsenic mobility in alteration products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry, 20, 2303–2314.

    Article  CAS  Google Scholar 

  • Sasaki, K., Nakano, H., Wilopo, W., Miura, Y., & Hirajima, T. (2009). Sorption and speciation of arsenic by zero-valent iron. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, 8–17.

    Article  CAS  Google Scholar 

  • Schreiber, M. E., Simo, J. A., & Freiberg, P. G. (2000). Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeology Journal, 8, 161–176.

    Article  CAS  Google Scholar 

  • Sharma, A. K., Kumar, R., Mittal, S., Hussain, S., Arora, M., Sharma, R. C., & Babu, J. N. (2015). In situ reductive regeneration of zerovalent iron nanoparticles immobilized on cellulose for atom efficient Cr(vi) adsorption. RSC Advances, 5, 89441–89446.

    Article  CAS  Google Scholar 

  • Shi, L.-N., Lin, Y.-M., Zhang, X., & Chen, Z.-l. (2011). Synthesis, characterization and kinetics of bentonite supported NZVI for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 171, 612–617.

    Article  CAS  Google Scholar 

  • Sleiman, N., Deluchat, V., Wazne, M., Mallet, M., Courtin-Nomade, A., Kazpard, V., & Baudu, M. (2016). Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism. Water Research, 99, 56–65.

    Article  CAS  Google Scholar 

  • Slovák, P., Malina, O., Kašlík, J., Tomanec, O., Tuček, J., Petr, M., Filip, J., Zoppellaro, G., & Zbořil, R. (2016). Zero-valent iron nanoparticles with unique spherical 3D architectures encode superior efficiency in copper entrapment. ACS Sustainable Chemistry & Engineering, 4, 2748–2753.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Statham, T. M., Mason, L. R., Mumford, K. A., & Stevens, G. W. (2015a). The specific reactive surface area of granular zero-valent iron in metal contaminant removal: Column experiments and modelling. Water Research, 77, 24–34.

    Article  CAS  Google Scholar 

  • Statham, T. M., Mumford, K. A., Rayner, J. L., & Stevens, G. W. (2015b). Removal of copper and zinc from ground water by granular zero-valent iron: A dynamic freeze–thaw permeable reactive barrier laboratory experiment. Cold Regions Science and Technology, 110, 120–128.

    Article  Google Scholar 

  • Stearns, D. M., Silveira, S. M., Wolf, K. K., & Luke, A. M. (2002). Chromium(III) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 513, 135–142.

    Article  CAS  Google Scholar 

  • Su, C., & Puls, R. W. (2001). Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation. Environmental Science & Technology, 35, 1487–1492.

    Article  CAS  Google Scholar 

  • Tanboonchuy, V., Hsu, J. C., Grisdanurak, N., & Liao, C. H. (2011). Gas-bubbled nano zero-valent iron process for high concentration arsenate removal. Journal of Hazardous Matererials, 186, 2123–2128.

    Article  CAS  Google Scholar 

  • Tang, C., Huang, Y. H., Zeng, H., & Zhang, Z. (2014a). Promotion effect of Mn2+ and Co2+ on selenate reduction by zero-valent iron. Chemical Engineering Journal, 244, 97–104.

    Article  CAS  Google Scholar 

  • Tang, C., Huang, Y. H., Zeng, H., & Zhang, Z. (2014b). Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe2+ and corrosion products, and selenate removal mechanisms. Water Research, 67, 166–174.

    Article  CAS  Google Scholar 

  • Teng, H., Xu, S., Zhao, C., Lv, F., & Liu, H. (2013). Removal of hexavalent chromium from aqueous solutions by sodium dodecyl sulfate stabilized nano zero-valent iron: a kinetics, equilibrium, thermodynamics study. Seperation Science and Technology, 48, 1729–1737.

    Article  CAS  Google Scholar 

  • Thekkae Padil, V. V., Filip, J., Suresh, K. I., Waclawek, S., & Cernik, M. (2016). Electrospun membrane composed of poly[acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Advances, 6, 110288–110300.

    Article  CAS  Google Scholar 

  • Thinh, N. N., Hanh, P. T. B., Ha, L. T. T., Anh, L. N., Hoang, T. V., Hoang, V. D., Dang, L. H., Khoi, N. V., & Lam, T. D. (2013). Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Materials Science and Engineering: C, 33, 1214–1218.

    Article  CAS  Google Scholar 

  • Tiberg, C., Kumpiene, J., Gustafsson, J. P., Marsz, A., Persson, I., Mench, M., & Kleja, D. B. (2016). Immobilization of Cu and As in two contaminated soils with zero-valent iron – Long-term performance and mechanisms. Applied Geochemistry, 67, 144–152.

    Article  CAS  Google Scholar 

  • Triszcz, J. M., Porta, A., & Einschlag, F. S. G. (2009). Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal. Chemical Engineering Journal, 150, 431–439.

    Article  CAS  Google Scholar 

  • Tuček, J., Prucek, R., Kolařík, J., Zoppellaro, G., Petr, M., Filip, J., Sharma, V. K., & Zbořil, R. (2017). Zero-valent iron nanoparticles reduce arsenites and arsenates to As(0) firmly embedded in Core–Shell superstructure: Challenging strategy of arsenic treatment under anoxic conditions. ACS Sustainable Chemistry & Engineering, 5, 3027–3038.

    Article  CAS  Google Scholar 

  • Tyrovola, K., Peroulaki, E., & Nikolaidis, N. P. (2007). Modeling of arsenic immobilization by zero valent iron. European Journal of Soil Biology, 43, 356–367.

    Article  CAS  Google Scholar 

  • Wang, C., Luo, H., Zhang, Z., Wu, Y., Zhang, J., & Chen, S. (2014). Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 268, 124–131.

    Article  CAS  Google Scholar 

  • Wang, X., Cong, S., Wang, P., Ma, J., Liu, H., & Ning, P. (2017). Novel green micelles Pluronic F-127 coating performance on nano zero-valent iron: Enhanced reactivity and innovative kinetics. Separation and Purification Technology, 174, 174–182.

    Article  CAS  Google Scholar 

  • Watts, J. F., & Wolstenholme, J. (2003). An introduction to surface analysis by XPS and AES. Wiley.

    Google Scholar 

  • Wen, Z., Zhang, Y., & Dai, C. (2014). Removal of phosphate from aqueous solution using nanoscale zerovalent iron (NZVI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 433–440.

    Article  CAS  Google Scholar 

  • Weng, C.-H., Lin, Y.-T., Lin, T. Y., & Kao, C. M. (2007). Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron. Journal of Hazardous Materials, 149, 292–302.

    Article  CAS  Google Scholar 

  • Wu, P., Li, S., Ju, L., Zhu, N., Wu, J., Li, P., & Dang, Z. (2012). Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles. Journal of Hazardous Materials, 219(220), 283–288.

    Article  CAS  Google Scholar 

  • Wu, L., Liao, L., Lv, G., & Qin, F. (2015). Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. Journal of Contaminant Hydrology, 179, 1–9.

    Article  CAS  Google Scholar 

  • Xi, Y., Mallavarapu, M., & Naidu, R. (2010). Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—A SEM, TEM and XPS study. Materials Research Bulletin, 45, 1361–1367.

    Article  CAS  Google Scholar 

  • Xiao, S., Ma, H., Shen, M., Wang, S., Huang, Q., & Shi, X. (2011). Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 381, 48–54.

    Article  CAS  Google Scholar 

  • Yan, W., Ramos, M. A. V., Koel, B. E., & Zhang, W.-X. (2012a). As(III) sequestration by iron nanoparticles: Study of solid-phase redox transformations with X-ray photoelectron spectroscopy. The Journal of Physical Chemistry C, 116, 5303–5311.

    Article  CAS  Google Scholar 

  • Yan, W., Vasic, R., Frenkel, A. I., & Koel, B. E. (2012b). Intraparticle reduction of Arsenite (As(III)) by nanoscale Zerovalent Iron (NZVI) investigated with in situ X-ray absorption spectroscopy. Environmental Science & Technology, 46, 7018–7026.

    Article  CAS  Google Scholar 

  • Yuan, Y., Marshall, G., Ferreccio, C., Steinmaus, C., Selvin, S., Liaw, J., Bates, M. N., & Smith, A. H. (2007). Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000. American Journal of Epidemiology, 166, 1381–1391.

    Article  Google Scholar 

  • Zboril, R., Andrle, M., Oplustil, F., Machala, L., Tucek, J., Filip, J., Marusak, Z., & Sharma, V. K. (2012). Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite. Journal of Hazardous Materials, 211–212, 126–130.

    Article  CAS  Google Scholar 

  • Zhang, P., Tao, X., Li, Z., & Bowman, R. S. (2002). Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets. Environmental Science & Technology, 36, 3597–3603.

    Article  CAS  Google Scholar 

  • Zhang, Y., Amrhein, C., & Frankenberger, W. T., Jr. (2005). Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron. Science of the Total Environment, 350, 1–11.

    Article  CAS  Google Scholar 

  • Zhang, Y.-Y., Jiang, H., Zhang, Y., & Xie, J.-F. (2013). The dispersity-dependent interaction between montmorillonite supported NZVI and Cr(VI) in aqueous solution. Chemical Engineering Journal, 229, 412–419.

    Article  CAS  Google Scholar 

  • Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.

    Article  CAS  Google Scholar 

  • Zhou, J., Ren, F., Wu, W., Zhang, S., Xiao, X., Xu, J., & Jiang, C. (2012). Controllable synthesis and catalysis application of hierarchical PS/Au core-shell nanocomposites. Journal of Colloid and Interface Science, 387, 47–55.

    Article  CAS  Google Scholar 

  • Zhou, Q., Li, J., Wang, M., & Zhao, D. (2016). Iron-based magnetic nanomaterials and their environmental applications. Critical Reviews in Environmental Science and Technology, 46, 783–826.

    Article  CAS  Google Scholar 

  • Zhu, H., Jia, Y., Wu, X., & Wang, H. (2009). Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172, 1591–1596.

    Article  CAS  Google Scholar 

  • Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., & Wang, X. (2016). Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environmental Science & Technology, 50, 7290–7304.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Technology Agency of the Czech Republic “Competence Centers” (project No. TE01020218), Ministry of the Interior of the Czech Republic (project No. VI20162019017), and the Ministry of Education, Youth and Sports of the Czech Republic (project No. LO1305). This work was further supported by Student Project IGA_PrF_2018_015 of Palacký University, Olomouc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Filip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filip, J., Kolařík, J., Petala, E., Petr, M., Šráček, O., Zbořil, R. (2019). Nanoscale Zerovalent Iron Particles for Treatment of Metalloids. In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_4

Download citation

Publish with us

Policies and ethics