Skip to main content

Member design

  • Chapter
  • First Online:
Design of Steel Structures to Eurocodes

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 1871 Accesses

Abstract

This chapter describes methods for checking structural stability, such as flexural, torsional, lateral torsional or local buckling of members or cross-section walls. It gives the procedures to define the design buckling resistance, which are, according to Eurocode 3, similar for all types of instability. The evaluation proceeds on four steps: a) determination of the critical elastic, Euler, load, b) calculation of the relative slenderness, c) evaluation of the reduction factor to buckling and d) determination of the buckling resistance by application of this factor to the yield load with due consideration of safety. Useful information is given at each step, for example for the Euler load which is calculated by differential equations or the energy method. In addition, recommendations and modelling possibilities for design by means of numerical non-linear analysis methods, as well as ways for the application of the very promising general method as defined by Eurocode 3 are given. The chapter ends with design methods for plate girders composed of walls susceptible to local buckling, with guidance for design of laced or battened built-up members and with verification procedures for composite girders consisting of steel beams and concrete flanges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [4.1] Bijlaard F, Feldmann M, Naumes J, Mller C, Sedlacek G (2010) The safety back– ground of Eurocode 3 – Recommendations for numerical values for the partial factors γM0 , γM1 and γM2 . DIN–Normenausschuss Bauwesen (NABau), Arbeitsausschuss Tragwerksbemessung, Dokument–Nr. NA005–08–16 AA N1004.

    Google Scholar 

  • [4.2] EN 1993–1–1 (2005) Eurocode 3: Design of steel structures – Part 1–1: General rules and rules for buildings. CEN.

    Google Scholar 

  • [4.3] EN 1993–2 (2004) Eurocode 3: Design of steel structures – Part 2: Steel Bridges. CEN.

    Google Scholar 

  • [4.4] Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw–Hill, New York.

    Google Scholar 

  • [4.5] Ayrton WE, Perry J (1886), On Struts. The Engineer 62:46–465, 513–515, London.

    Google Scholar 

  • [4.6] Robertson A (1925) The strength of struts. The Institution of Civil Engineers. Selected Engineering Papers, 28:1–55.

    Google Scholar 

  • [4.7] ECCS (1978). European recommendations for steel construction. In: Sfintesco D (ed) European Convention for Constructional Steelwork, Brussel.

    Google Scholar 

  • [4.8] Maquoi R, Rondal J (1978) Mise en équation des nouvelles courbes europennes de flambement. Construction Métallique :17–30.

    Google Scholar 

  • [4.9] Rondal J, Maquoi R. (1979) Formulation d’Ayrton–Perry pour le flambement des barres métaliques. Construction Métallique 4:41–53.

    Google Scholar 

  • [4.10] Lindner J, Kuhlmann U (2016) Verification of flexural buckling according to Eurocode 3 part 1–1 using bow imperfections. Stahlbau 85(4):349–362.

    Google Scholar 

  • [4.11] Stroetmann R, Lindner J (2010) Member stability according to DIN EN 1993–1–1. Stahlbau 79(11):797–808.

    Google Scholar 

  • [4.12] Taras A, Kuhlmann U, A. Just A (2013) Design of Compression Members by 2nd Order Analysis – Imperfection Amplitudes, Material Dependency, Influence of γM1 . Document ECCS – TC8 TC8–2013–06–005.

    Google Scholar 

  • [4.13] EN 1993–1–3 (2005) Eurocode 3: Design of steel structures – Part 1–3: General rules. Supplementary rules for cold–formed thin gauge members and sheeting. CEN.

    Google Scholar 

  • [4.14] Lindner J, Bos AM, Djalaly H, Fischer MJ, Nethercot DA (1976) Flexural–torsional buckling. In Manual on Stability, European Convention for Constructional Steelwork, 104–112.

    Google Scholar 

  • [4.15] Chen WF, Atsuta T (1977) Theory of beam–columns. McGraw–Hill, New York.

    Google Scholar 

  • [4.16] Roik K, Carl J, Lindner J (1972) Biegetorsionsprobleme gerader dünnwandiger Stäbe, Ernst&Sohn, Berlin.

    Google Scholar 

  • [4.17] Vayas I (2004) Lateral torsional buckling of girders with monosymmetric cross–sections. Stahlbau 73(2):107–115.

    Article  Google Scholar 

  • [4.18] Petersen C (1982) Statik und Stabilität der Baukonstruktionen. Vieweg. Braunschweig.

    Google Scholar 

  • [4.19] Nethercot DA, Trahair NS (1976) Lateral buckling approximations for elastic beams, Journal of the Institution of Structural Engineers, Part A Design and Construction, 54:197–204.

    Google Scholar 

  • [4.20] O’hEachteirn P, Nethercot DA (1988) Lateral buckling of monosymmetric plate girders. Journal of Constructional Steel Research, 11:261–282.

    Article  Google Scholar 

  • [4.21] Lindner J (2008) Beams in bending restrained by rotational spring stiffness and shear stiffness of adjacent elements. Stahlbau, 77(6):427–435.

    Article  Google Scholar 

  • [4.22] Taras A, Greiner R (2008) Torsional and flexural torsional buckling – A study on laterally restrained I–sections. Journal of Constructional Steel Research, 64(7–8): 725–731.

    Article  Google Scholar 

  • [4.23] Davies JM, Bryan, ER (1982) Manual of stressed skin diaphragm design. Granada Publishing.

    Google Scholar 

  • [4.24] Kindmann R, R. Muszkievicz R (2004) Critical bending moments and modal shapes for lateral torsional buckling of beams under consideration of torsional restraints. Stahlbau, 73(2):98–106.

    Google Scholar 

  • [4.25] EBPlate Version 2.01, Centre Technique Industriel de la Construction Metallique (CTICM).

    Google Scholar 

  • [4.26] Vayas I, Iliopoulos A, Th. Adamakos T (2010) Spatial systems for modelling steel– concrete composite bridges – comparison of grillage systems and FE models. Steel Construction Design and Research 3:100–111.

    Article  Google Scholar 

  • [4.27] Iliopoulos A, Smyrnaios S, Vayas I (2015) Truss models for inelastic stability analysis and design of steel plate girders. Engineering Structures,105(12):165–173.

    Article  Google Scholar 

  • [4.28] Szalai J, F. Papp F (2010) On the theoretical background of the generalization of Ayrton–Perry type resistance formulas. Journal of Constructional Steel Research, 66:670–679.

    Article  Google Scholar 

  • [4.29] Taras A, R. Greiner R (2010) New design curves for lateral–torsional buckling– Proposal based on a consistent derivation. Journal of Constructional Steel Research, 66:648–663.

    Article  Google Scholar 

  • [4.30] Marques L, da Silva LS, Greiner R, C. Rebelo C (2013) Development of a consistent design procedure for lteral–torsional buckling of tapered beams. Journal of Constructional Steel Research, 89:213–235.

    Article  Google Scholar 

  • [4.31] Bijlaard F, Feldmann M, Naumes J, Sedlacek G (2010) The “general method” for assessing the out–of–plane stability of structural members and frames and the comparison with alternative rules in EN 1993 – Eurocode 3 – Part 1–11. Steel Construction 3:19–33.

    Article  Google Scholar 

  • [4.32] Badari B, Pap F (2015) On design method of lateral–torsional buckling of beams: State of the art and a new proposal for a general type design method. Periodica Polytechnica Civil Engineering, 59(2):179–192.

    Article  Google Scholar 

  • [4.33] Vayas I (2016) Models for stability analysis and design of steel and composite plate girders, In: Dubina (ed) The International Colloqium on Stability and Ductility of Steel Structures ‘16, 39–48, Ernst&Sohn, Berlin.

    Google Scholar 

  • [4.34] Kindmann R, Beie–Tertel J (2010) Equivalent geometric imperfections for the lateral torsional buckling of rolled profile beams – Fundamentals. Stahlbau, 79(9):689–69.

    Article  Google Scholar 

  • [4.35] Dischinger, F (1937) Untersuchungen über die Knicksicherheit, die elastische Verformung und das Kriechen des Betons bei Bogenbrücken. Bauingenieur 18:487–520, 539–552, 596–621.

    Google Scholar 

  • [4.36] Boissonnade N, Greiner R, Jaspart JP, Lindner J. (2006) ECCS TC 8, No. 119: Rules for member stability in EN 1993–1–1. Background documentation and design guidelines, ECCS publication, Brussels.

    Google Scholar 

  • [4.37] Boissonnade N, Jaspart JP, Muzeau JP, Villette M (2004) New Interaction formulae for beam–columns in Eurocode 3. The French–Belgian approach. Journal of Constructional Steel Research, 60:421–31.

    Article  Google Scholar 

  • [4.38] Greiner R, Lindner J (2006) Interaction formulae for members subjected to bending and axial compression in Eurocode 3 – the Method 2 approach. Journal of Constructional Steel Research, 62(8):757–770.

    Article  Google Scholar 

  • [4.39] EN 1993–1–5 (2006) Eurocode 3: Design of steel structures – Part 1–5: Plated structural elements. CEN.

    Google Scholar 

  • [4.40] Johansson B, Maquoi R, Sedlacek G, Müller C, Schneider R (1999), New design rules for plated structures in Eurocode 3. Stahlbau, 68(11):857–879.

    Article  Google Scholar 

  • [4.41] Vayas I, Iliopoulos A (2014): Design of Steel–Concrete Composite Bridges to Eurocodes, CRC Press, New York.

    Google Scholar 

  • [4.42] Dubas P, Gehri E (1986) Behaviour and design of steel plated structures. ECCS publication, Brussels.

    Google Scholar 

  • [4.43] von Karman T (1910) Festigkeitsprobleme im Maschinenbau. Encyclopaedie der Mathematischen Wissenschaften.

    Google Scholar 

  • [4.44] Timoshenko SP, Goodier JN (1970) Theory of elasticity. Mc–Graw–Hill, New York.

    Google Scholar 

  • [4.45] EN 1994–1–1 (2004) Design of composite steel and concrete structures, Part 1–1: General rules and rules for buildings. CEN.

    Google Scholar 

  • [4.46] Johnson RP (2012) Designers’ Guide to EN 1994–1–1: Eurocode 4: Design of Composite Steel and Concrete Structures, Part 1–1 : General Rules and Rules for Buildings, 2nd ed., Thomas Telford Ltd, London.

    Google Scholar 

  • [4.47] Dujmovic D, Androic B, Lukacevic I (2014) Composite Structures according to Eurocode 4 Worked Examples. Ernst&Sohn, Berlin.

    Google Scholar 

  • [4.48] Ermopoulos J (1986) Buckling of tapered bars under stepped axial loads. Journal of Structural Engineering, ASCE, 112(6):1346–1354.

    Article  Google Scholar 

  • [4.49] Ermopoulos J (1988) Slope–deflection method and bending of tapered bars under stepped loads. Journal of Constructional Steel Research, 11:121–141.

    Article  Google Scholar 

  • [4.50] Ermopoulos J (1997) Equivalent buckling length of non–uniform members. Journal of Constructional Steel Research, 42(2):141–158.

    Article  Google Scholar 

  • [4.51] Ermopoulos J (1999) Buckling length of nonuniform members under stepped axial loads. International Journal of Computers and Structures, 73:573–582.

    Google Scholar 

  • [4.52] Ermopoulos J, Raftoyiannis I (2002) Influence of initial imperfections on the stability of non–uniform steel members. In: 3rd European Conference on Steel Structures Coimbra, Portugal, Vol. I:241–249.

    Google Scholar 

  • [4.53] Raftoyiannis I, Ermopoulos J (2005) Stability of tapered and stepped steel columns with initial imperfections. International Journal of Engineering Structures, 27:1248–1257.

    Article  Google Scholar 

  • [4.54] Wood R S (1974) Effective lengths of columns in multi–storey buildings. Structural Engineering, 52:235–246.

    Google Scholar 

  • [4.55] Galambos T (ed) (1988) Guide to stability criteria for metal structures. 4th edition, Wiley, New York.

    Google Scholar 

  • [4.56] Galea Y (1981) Flambement des poteaux a inertie variable. Construction Metallique, 1:21–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Vayas .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vayas, I., Ermopoulos, J., Ioannidis, G. (2019). Member design. In: Design of Steel Structures to Eurocodes. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-319-95474-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95474-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95473-8

  • Online ISBN: 978-3-319-95474-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics