Skip to main content

Electroencephalogram-Based Brain-Computer Interface for Internet of Robotic Things

  • Chapter
  • First Online:
Cognitive Infocommunications, Theory and Applications

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 13))

Abstract

Several papers focus on the IoT ranging from consumer oriented to industrial products. The IoT concept has become usual since the beginning of the 21st century and was introduced formally in 2005 [45, 53]. IoT gives the possibility for lots of uniquely addressable “things” to communicate and exchange information with each other over the existing network systems and protocols [1, 10, 15]. The IoT enables to make information detected by these objects transmittable, and the objects themselves controllable, by using the current network infrastructure [13, 18]. This provides the opportunity to integrate the physical world and IT systems in an even greater scale, which leads to the enhancement of efficiency, accuracy, and economics by minimal human intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelmann R, Langheinrich M, Floerkemeier C (2006) A toolkit for bar code recognition and resolving on camera phones—jump-starting the internet of things. In: Hochberger C, Liskowsky R (eds) GI Jahrestagung (2). LNI, GI, vol 94, p 366–373

    Google Scholar 

  2. Arnsten Amy FT, Berridge Craig W, McCracken James T (2009) The neurobiological basis of attention-deficit/hyperactivity disorder. Prim Psychiatry 16:47–54

    Google Scholar 

  3. Baranyi P, Csapo A (2012) Definition and synergies of cognitive infocommunications. Acta Polytech Hung 9(1):67–83

    Google Scholar 

  4. Baranyi P, Csapo A, Gyula S (2015) Cognitive infocommunications (CogInfoCom). Springer, Heidelberg, p 378

    Google Scholar 

  5. Benedek A, Molnar G (2014) Supporting the m-learning based knowledge transfer in university education and corporate sector. In: Arnedillo Sánchez I, Isaías P (eds) Proceedings of the 10th international conference on mobile learning 2014, Madrid, Spain, Feb 2014, pp 339–343

    Google Scholar 

  6. Brown VJ, Bowman EM (2002) Rodent models of prefrontal cortical function. Trends Neurosci 25:340–343

    Article  Google Scholar 

  7. Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  Google Scholar 

  8. Cauda F, Cavanna AE, Dágata F, Sacco K, Duca S, Geminiani GC (2011) Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J Cognit Neurosci 23:2864–2877

    Google Scholar 

  9. Chen F, Jia Y, Xi N (2013) Non-invasive EEG based mental state identification using nonlinear combination. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO). https://doi.org/10.1109/robio.2013.6739789

  10. Christian F et al (2008) The internet of things. In: Floerkemeier C, Langheinrich M, Fleisch E, Sarma SE (eds) IOT 2008: first international conference, Zurich, Switzerland, March 2008, vol 4952. Springer, Heidelberg, p 378

    Google Scholar 

  11. Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  Google Scholar 

  12. Feenstra M, Botterblom M, Uum JV (2002) Behavioral arousal and increased dopamine efflux after blockade of NMDA-receptors in the prefrontal cortex are dependent on activation of glutamatergic neurotransmission. Neuropharmacology 42:752–763

    Article  Google Scholar 

  13. Fortino G (2016) Agents meet the IoT: toward ecosystems of networked smart objects. IEEE Syst Man Cybern Mag 2:43–47

    Article  Google Scholar 

  14. Freedman M, Oscar-Berman M (1986) Bilateral frontal lobe disease and selective delayed response deficits in humans. Behav Neurosci 100:337–342

    Article  Google Scholar 

  15. Friedemann M, Christian F (2010) From the internet of computers to the internet of things. In: Sachs K, Petrov I, Guerrero P (eds) From active data management to event-based systems and more, Papers in Honor of Alejandro Buchmann on the Occasion of His 60th Birthday, vol 6462. Springer, Heidelberg, pp 242–259

    Google Scholar 

  16. Friganovic K, Medved M, Cifrek M (2016) Brain-computer interface based on steady-state visual evoked potentials. In: 2016 39th international convention on information and communication technology, electronics and microelectronics (MIPRO). https://doi.org/10.1109/mipro.2016.7522174

  17. Gallo DA, Mcdonough IM, Scimeca J (2010) Dissociating source memory decisions in the prefrontal cortex: fMRI of diagnostic and disqualifying monitoring. J Cognit Neurosci 22:955–969

    Article  Google Scholar 

  18. Hakiri A, Berthou P, Gokhale A, Abdellatif S (2015) Publish/subscribe-enabled software defined networking for efficient and scalable IoT communications. IEEE Commun Mag 53:48–54

    Article  Google Scholar 

  19. Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    Article  Google Scholar 

  20. Horvath I (2016) Disruptive technologies in higher education. In: 2016 7th IEEE international conference on cognitive infocommunications (CogInfoCom), Wroclaw, Poland, Oct 2016. pp 347–352. https://doi.org/10.1109/CogInfoCom.2016.7804574

  21. Horvath I, Kvasznicza Z (2016) Innovative engineering training—today’s answer to the challenges of the future. In: 2016 International education conference, Venice, Italy, June 2016, pp 647-1–647-7

    Google Scholar 

  22. Horvath I (2016) Innovative engineering education in the cooperative VR environment. In: 2016 7th IEEE international conference on cognitive infocommunications (CogInfoCom), Wroclaw, Poland, Oct 2016, pp 359–364. https://doi.org/10.1109/CogInfoCom.2016.7804576

  23. Horvath I (2016) Digital life gap between students and lecturers. In: 2016 7th IEEE international conference on cognitive infocommunications (CogInfoCom), Wroclaw, Poland, Oct 2016. pp 353–358. https://doi.org/10.1109/CogInfoCom.2016.7804575

  24. Jadidi AF, Davoodi R, Moradi MH, Yoonessi A (2014) The impact of numeration on visual attention during a psychophysical task; an ERP study. In: 2014 21th Iranian conference on biomedical engineering (ICBME). https://doi.org/10.1109/icbme.2014.7043947

  25. Jansma JM, Ramsey NF, Slagter HA, Kahn RS (2001) Functional anatomical correlates of controlled and automatic processing. J Cognit Neurosci 13:730–743

    Article  Google Scholar 

  26. Kaysa WA, Widyotriatmo A (2013) Design of brain-computer interface platform for semi real-time commanding electrical wheelchair simulator movement. In: 2013 3rd international conference on instrumentation control and automation (ICA). https://doi.org/10.1109/ica.2013.6734043

  27. Kennerley SW, Dahmubed AF, Lara AH, Wallis JD (2009) Neurons in the frontal lobe encode the value of multiple decision variables. J Cognit Neurosci (21)6:1162–1178

    Google Scholar 

  28. Kita H, Oomura Y (1981) Reciprocal connections between the lateral hypothalamus and the frontal cortex in the rat: electrophysiological and anatomical observations. Brain Res 213:116

    Article  Google Scholar 

  29. Kolb B (1991) Chapter 25 animal models for human PFC-related disorders. In: Progress in brain research the prefrontal its structure, function and cortex pathology, p 501–519

    Google Scholar 

  30. Laar BVD, Gurkok H, Bos DP-O, Poel M, Nijholt A (2013) Experiencing BCI control in a popular computer game. IEEE Trans Comput Intell AI Games 5(2):176–184

    Article  Google Scholar 

  31. Lacroix L, Spinelli S, Heidbreder CA, Feldon J (2000) Differential role of the medial and lateral prefrontal cortices in fear and anxiety. Behav Neurosci 114:11191130

    Article  Google Scholar 

  32. Lebedev MA, Nicolelis MA (2006) Brainmachine interfaces: past, present and future. Trends Neurosci 29(9):536–546

    Article  Google Scholar 

  33. Lew E, Chavarriaga R, Zhang H, Seeck M, Millan JRD (2012) Self-paced movement intention detection from human brain signals: invasive and non-invasive EEG. In: 2012 annual international conference of the IEEE engineering in medicine and biology society. https://doi.org/10.1109/embc.2012.6346665

  34. Milner B (1982) Some cognitive effects of frontal-lobe lesions in man. Philos Trans R Soc B Biol Sci 298:211–226

    Article  Google Scholar 

  35. Molnar G Modern ICT based teaching and learning support systems and solutions in higher education practice. In: Turcani M, Drlik M, Kapusta J, Svec P (eds) 10th international scientific conference on distance learning in applied informatics, Sturovo, Slovakia, May 2014, pp 421–430

    Google Scholar 

  36. Molnar G Szuts Z (2014) Advanced mobile communication and media devices and applications in the base of higher education. In: Aniko S (ed) SISY 2014: IEEE 12th international symposium on intelligent systems and informatics. Subotica, Serbia, Sept 2014, pp 169–174

    Google Scholar 

  37. Morgane P, Galler J, Mokler D (2005) A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol 75:143–160

    Article  Google Scholar 

  38. Murase N, Rothwell JC, Kaji R, Urushihara R, Murayama N, Igasaki T, Sakata-Igasaki M, Shibasaki H (2007) Acute effect of subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex in writer’s cramp. In: 2007 IEEE/ICME international conference on complex medical engineering. https://doi.org/10.1109/iccme.2007.4382100.

  39. Nagy B, Szabó I, Papp S, Takács G, Szalay C, Karádi Z (2012) Glucose-monitoring neurons in the mediodorsal prefrontal cortex. Brain Res 1444:38–44

    Article  Google Scholar 

  40. Nagy B, Takács G, Szabó I, Lénárd L, Karádi Z (2012) Taste reactivity alterations after streptozotocin microinjection into the mediodorsal prefrontal cortex. Behav Brain Res 234:228–232

    Article  Google Scholar 

  41. Nordahl CW, Ranganath C, Yonelinas AP, Decarli C, Fletcher E, Jagust WJ (2006) White matter changes compromise prefrontal cortex function in healthy elderly individuals. J Cognit Neurosci 18:418–429

    Article  Google Scholar 

  42. Peers PV (2005) Attentional functions of parietal and frontal cortex. Cereb Cortex 15:1469–1484

    Article  Google Scholar 

  43. Ramnani N, Owen AM (2004) Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci 5:184–194

    Article  Google Scholar 

  44. Ullah K, Ali M, Rizwan M, Imran M (2011) Low-cost single-channel EEG based communication system for people with lock-in syndrome. In: 2011 IEEE 14th international multitopic conference. https://doi.org/10.1109/inmic.2011.6151455

  45. Vermesan O, Friess P (eds) (2013) Internet of things: converging technologies for smart environments and integrated ecosystems. Aalborg, Denmark

    Google Scholar 

  46. Wolpaw JR et al (2002) Braincomputer interfaces for communication and control. IEEE Commun Mag 13(6):7356–7382

    Google Scholar 

  47. Wolpaw JR, Wolpaw EW (2012) Brain-computer interfaces: something new under the sun. In: Wolpaw EW, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, New York, pp 3–12

    Chapter  Google Scholar 

  48. Yeon C, Kim D, Kim K, Chung E (2014) Sensory-evoked potential using a non-invasive flexible multi-channel dry EEG electrode with vibration motor stimulation. In: IEEE SENSORS 2014 proceedings. https://doi.org/10.1109/icsens.2014.6985049

  49. Yoshida H, Tanaka Y, Kikkawa S (2012) EEG analysis of frontal lobe area in arousal maintenance state against sleepiness. In: 2012 annual international conference of the IEEE engineering in medicine and biology society. https://doi.org/10.1109/embc.2012.6346578

  50. Yu Ishikawa Y, Takata M, Joe K (2012) Constitution and phase analysis of alpha waves. In: The 5th international conference on biomedical engineering, 2012. https://doi.org/10.1109/bmeicon.2012.6465482

  51. Zald DH (2006) Neuropsychological assessment of the orbitofrontal cortex. The Orbitofrontal Cortex 449–480

    Google Scholar 

  52. ABI Research (2014) The Internet of Robotic Things. In: Technology analysis report. Available via DIALOG. https://www.abiresearch.com/market-research/product/1019712-the-internet-of-robotic-things. Accessed 28 Jan 2017

  53. International Telecommunication Union (ITU) (2005) The Internet of Things. In: ITU internet reports. Available via DIALOG. https://www.itu.int/net/wsis/tunis/newsroom/stats/The-Internet-of-Things-2005.pdf. Accessed 28 Jan 2017

  54. NeuroSky Inc (2009) Brain wave signal (EEG) of NeuroSky. Available via DIALOG. http://www.frontiernerds.com/files/neurosky-vs-medical-eeg.pdf. Accessed 28 Jan 2017

  55. NeuroSky Inc (2015) MindWave Mobile: User Guide. Available via DIALOG. http://download.neurosky.com/support_page_files/MindWaveMobile/docs/mindwave/_mobile_user_guide.pdf. Accessed 28 Jan 2017

  56. NeuroSky Inc (2015) “store.neurosky.com”. Available via DIALOG. http://store.neurosky.com/pages/mindwave. Accessed 28 Jan 2017

Download references

Acknowledgements

The project is sponsored by EFOP-3.6.1-16-2016-00003 founds, Consolidate long-term R and D and I processes at the University of Dunaujvaros.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozsef Katona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katona, J., Ujbanyi, T., Sziladi, G., Kovari, A. (2019). Electroencephalogram-Based Brain-Computer Interface for Internet of Robotic Things. In: Klempous, R., Nikodem, J., Baranyi, P. (eds) Cognitive Infocommunications, Theory and Applications. Topics in Intelligent Engineering and Informatics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-95996-2_12

Download citation

Publish with us

Policies and ethics