Skip to main content

An Overview of OCT Techniques for Detection of Ophthalmic Syndromes

  • Chapter
  • First Online:
Applications of Intelligent Technologies in Healthcare

Abstract

The retina is an essential part of the human eye. It is a very small part at the subsequent pole of the human eye, and it is composed of a tissue cell that can detect the presence of light. The tissue is sensitive enough to detect the amount of light present, its intensity, and a range of different wavelengths as well. These tissues generate nerve signals, and those signals are passed to the brain via the optic nerve. If the retina malfunctions, then different retinal disorders can occur such as diabetic retinopathy, glaucoma, and pathologic myopia. These can be considered the major causes of total loss of vision throughout the world.

Usually these diseases are treated by different ophthalmologists and specialist of the fields, but it has been seen that once the disease strikes, it becomes very different and in most of the cases impossible to reverse and gain full vision fitness. Thus, it is of the essence that earlier detection of the disease must be done so that the remedy can work. If the treatment starts in time, vision can be saved. In order to perfectly detect the disease, the ophthalmologists require some quantitative and qualitative analysis of the disease. These readings have to be noted at the start of the detection and throughout the process of the therapy. Depending upon these readings, the ophthalmologists can declare where the patient is heading, toward betterment or toward a worse condition.

The gathering of these qualitative and quantitative metrics through manual methods is insufficient and produces erratic and inconsistent outputs. Therefore, it can be said with a certain degree of confidence that a computerized automated system must be in place to do the job. In this review, a comprehensive analysis and evaluation of practices are accomplished of diverse computer vision and image processing techniques applied to OCT images for an automatic, computer-aided examination for the diagnosis of retinal disorder diseases. Disease origins and causes are also testified, and these can have proved a very basic understanding of the disease and how the computer-aided diagnosis (CAD) system can be made using this knowledge. Therefore, this review can provide a good understanding to analyze visual impairments found in OCT images. This can be of aid to any researcher in the future to design a system for detection retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinso, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., & Fujimoto, J. G. (1991). Optical coherence tomography. Science, 254(5035), 1178–1181.

    Article  Google Scholar 

  2. Drexler, W., & Fujimoto, J. G. (2008). State-of-the-art retinal optical coherence tomography. Progress in Retinal and Eye Research, 27(1), 45–88. https://doi.org/10.1016/j.preteyeres.2007.07.005.

    Article  Google Scholar 

  3. Poddar, R., & Reddikumar, M. (2015). In vitro 3D anterior segment imaging in lamb eye with extended depth range swept source optical coherence tomography. Optical and Laser Technology, 67, 33–37. https://doi.org/10.1016/j.optlastec.2014.09.007.

    Article  Google Scholar 

  4. Povazay, B., Hofer, B., Torti, C., Hermann, B., Tumlinson, A. R., Esmaeelpour, M., Egan, C. A., Bird, A. C., & Drexler, W. (2009). Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Optics Express, 17(5), 4134–4150. https://doi.org/10.1364/OE.17.004134.

    Article  Google Scholar 

  5. Lebed, E., Mackenzie, P. J., Sarunic, M. V., & Beg, F. M. (2010). Rapid volumetric OCT image acquisition using compressive sampling. Optics Express, 18(20), 21003–21012. https://doi.org/10.1364/OE.18.021003.

    Article  Google Scholar 

  6. Young, M., Lebed, E., Jian, Y., Mackenzie, P. J., Beg, M. F., & Sarunic, M. V. (2011). Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography. Biomedical Optics Express, 2(9), 2690–2697. https://doi.org/10.1364/BOE.2.002690.

    Article  Google Scholar 

  7. Sieun, L., Lebed, E., Sarunic, M. V., & Beg, M. F. (2015). Exact surface registration of retinal surfaces from 3-D optical coherence tomography images. IEEE Transactions on Biomedical Engineering, 62(2), 609–617. https://doi.org/10.1109/TBME.2014.2361778.

    Article  Google Scholar 

  8. Puliafito, C. A., Hee, M. R., Lin, C. P., Reichel, E., Schuman, J. S., Duker, J. S., Izatt, J. A., Swanson, E. A., & Fujimoto, J. G. (1995). Imaging of macular diseases with optical coherence tomography. Ophthalmology, 102(2), 217–229.

    Article  Google Scholar 

  9. Abramoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3, 169–208. https://doi.org/10.1109/RBME.2010.2084567.

    Article  Google Scholar 

  10. Bron, A. M., Francoz, A., Beynat, J., Nicot, F., Cattaneo, A., & Creuzot, C. (2011). Is choroidal thickness different between glaucoma patients and healthy subjects? Acta Ophthalmologica. https://doi.org/10.1111/j.1755-3768.2011.4353.x.

    Google Scholar 

  11. Bowd, C., Zangwill, L. M., Blumenthal, E. Z., Vasile, C., Boehm, A. G., Gokhale, P. A., Mohammadi, K., Amini, P., Sankary, T. M., & Weinreb, R. N. (2002). Imaging of the optic disc and retinal nerve fiber layer: The effects of age, optic disc area, refractive error, and gender. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19(1), 197–207.

    Article  Google Scholar 

  12. Bouma, B. (2001). Handbook of optical coherence tomography. New York: Taylor & Francis.

    Book  Google Scholar 

  13. Schuman, J. S. (2008). Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Transactions of the American Ophthalmological Society, 106, 426–458.

    Google Scholar 

  14. Wang, R. K., & Tuchin, V. V. (2013). Advanced biophotonics: Tissue optical sectioning. New York: Taylor & Francis.

    Google Scholar 

  15. Hee, M. R., Izatt, J. A., Swanson, E. A., Huang, D., Schuman, J. S., Lin, C. P., Puliafito, C. A., & Fujimoto, J. G. (1995). Optical coherence tomography of the human retina. Archives of Ophthalmology, 113(3), 325–332.

    Article  Google Scholar 

  16. Wojtkowski, M., Srinivasan, V., Fujimoto, J. G., Ko, T., Schuman, J. S., Kowalczyk, A., & Duker, J. S. (2005). Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology, 112(10), 1734–1746. https://doi.org/10.1016/j.ophtha.2005.05.023.

    Article  Google Scholar 

  17. Wojtkowski, M. (2010). High-speed optical coherence tomography: Basics and applications. Applied Optics, 49(16), D30–D61. https://doi.org/10.1364/AO.49.000D30.

    Article  Google Scholar 

  18. Wojtkowski, M., Bajraszewski, T., Targowski, P., & Kowalczyk, A. (2003). Real-time in vivo imaging by high-speed spectral optical coherence tomography. Optics Letters, 28(19), 1745–1747. https://doi.org/10.1364/OL.28.001745.

    Article  Google Scholar 

  19. Yun, S., Tearney, G., Bouma, B., Park, B., & de Boer, J. (2003). Highspeed spectral-domain optical coherence tomography at 1.3 lm wavelength. Optics Express, 11(26), 3598–3604. https://doi.org/10.1364/OE.11.003598.

    Article  Google Scholar 

  20. Nassif, N., Cense, B., Hyle Park, B., Yun, S. H., Chen, T. C., Bouma, B. E., Tearney, G. J., & de Boer, J. F. (2004). In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics Letters, 29(5), 480–482. https://doi.org/10.1364/OL.29.000480.

    Article  Google Scholar 

  21. Bajraszewski, T., Wojtkowski, M., Szkulmowski, M., Szkulmowska, A., Huber, R., & Kowalczyk, A. (2008). Improved spectral optical coherence tomography using optical frequency comb. Optics Express, 16(6), 4163–4176. https://doi.org/10.1364/OE.16.004163.

    Article  Google Scholar 

  22. Potsaid, B., Gorczynska, I., Srinivasan, V. J., Chen, Y., Jiang, J., Cable, A., & Fujimoto, J. G. (2008). Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Optics Express, 16(19), 15149–15169. https://doi.org/10.1364/OE.16.015149.

    Article  Google Scholar 

  23. Grulkowski, I., Gora, M., Szkulmowski, M., Gorczynska, I., Szlag, D., Marcos, S., Kowalczyk, A., & Wojtkowski, M. (2009). Anterior segment imaging with spectral OCT system using a high-speed CMOS camera. Optics Express, 17(6), 4842–4858. https://doi.org/10.1364/OE.17.004842.

    Article  Google Scholar 

  24. Choma, M., Sarunic, M., Yang, C., & Izatt, J. (2003). Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 11(18), 2183–2189. https://doi.org/10.1364/OE.11.002183.

    Article  Google Scholar 

  25. Yun, S. H., Boudoux, C., Tearney, G. J., & Bouma, B. E. (2003). High speed wavelength-swept semiconductor laser with a polygon scanner based wavelength filter. Optics Letters, 28(20), 1981–1983. https://doi.org/10.1364/OL.28.001981.

    Article  Google Scholar 

  26. Golubovic, B., Bouma, B. E., Tearney, G. J., & Fujimoto, J. G. (1997). Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4? : Forsterite laser. Optics Letters, 2(22), 1704–1706. https://doi.org/10.1364/OL.22.001704.

    Article  Google Scholar 

  27. Yun, S., Tearney, G., de Boer, J., Iftimia, N., & Bouma, B. (2003). High speed optical frequency-domain imaging. Optics Express, 11(22), 2953–2963. https://doi.org/10.1364/OE.11.002953.

    Article  Google Scholar 

  28. Oh, W. Y., Yun, S. H., Tearney, G. J., & Bouma, B. E. (2005). 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Optics Letters, 30(23), 3159–3161. https://doi.org/10.1364/OL.30.003159.

    Article  Google Scholar 

  29. Huber, R., Wojtkowski, M., Fujimoto, J. G., Jiang, J. Y., & Cable, A. E. (2005). Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Optics Express, 13(26), 10523–10538. https://doi.org/10.1364/OPEX.13.010523.

    Article  Google Scholar 

  30. Larina, I. V., Furushima, K., Dickinson, M. E., Behringer, R. R., & Larin, K. V. (2009). Live imaging of rat embryos with Doppler swept source optical coherence tomography. Journal of Biomedical Optics, 14(5), 050506–050503. https://doi.org/10.1117/1.3241044.

    Article  Google Scholar 

  31. Choma, M. A., Hsu, K., & Izatt, J. A. (2005). Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. Journal of Biomedical Optics, 10(4), 044009–044006. https://doi.org/10.1117/1.1961474.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syed, A.M., Akbar, M.U., Fatima, J. (2019). An Overview of OCT Techniques for Detection of Ophthalmic Syndromes. In: Khan, F., Jan, M., Alam, M. (eds) Applications of Intelligent Technologies in Healthcare. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-96139-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96139-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96138-5

  • Online ISBN: 978-3-319-96139-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics