Skip to main content

3D Microstructure Modeling and Simulation of Materials in Lithium-ion Battery Cells

  • Conference paper
  • First Online:
Simulation Science (SimScience 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 889))

Included in the following conference series:

Abstract

The microstructure of lithium-ion battery electrodes has a major influence on the performance and durability of lithium-ion batteries. In this paper, an overview of a general framework for the simulation of battery electrode microstructures is presented. A multistep approach is used for the generation of such particle-based materials. First, a ‘host lattice’ for the coarse structure of the material and the placement of particles is generated. Then, several application-specific rules, which, e.g., influence connectivity are implemented. Finally, the particles are simulated using Gaussian random fields on the sphere. To show the broad applicability of this approach, three different applications of the general framework are discussed, which allow to model the microstructure of anodes of energy and power cells as well as of cathodes of energy cells. Finally, the validation of such models as well as applications together with electrochemical transport simulation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bezrukov, A., Bargie, M., Stoyan, D.: Statistical analysis of simulated random packings of spheres. Particle Particle Syst. Charact. 19(2), 111–118 (2002)

    Article  Google Scholar 

  2. Chen, C.F., Mukherjee, P.P.: Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes. Phys. Chem. Chem. Phys. 17(15), 9812–9827 (2015)

    Article  Google Scholar 

  3. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley, Chichester (2013)

    Book  Google Scholar 

  4. Cho, S., Chen, C.F., Mukherjee, P.P.: Influence of microstructure on impedance response in intercalation electrodes. J. Electrochem. Soc. 162(7), A1202–A1214 (2015)

    Article  Google Scholar 

  5. Dunn, J.B., Gaines, L., Barnes, M., Wang, M., Sullivan, J.: Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle. Technical report, Argonne National Laboratory (ANL) (2012)

    Google Scholar 

  6. Feinauer, J., Brereton, T., Spettl, A., Weber, M., Manke, I., Schmidt, V.: Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via Gaussian random fields on the sphere. Comput. Mater. Sci. 109, 137–146 (2015)

    Article  Google Scholar 

  7. Feinauer, J., Spettl, A., Manke, I., Strege, S., Kwade, A., Pott, A., Schmidt, V.: Structural characterization of particle systems using spherical harmonics. Mater. Charact. 106, 123–133 (2015)

    Article  Google Scholar 

  8. Feinauer, J., Hein, S., Rave, S., Schmidt, S., Westhoff, D., Zausch, J., Iliev, O., Latz, A., Ohlberger, M., Schmidt, V.: MULTIBAT: unified workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, electrochemical degradation models and model order reduction. J. Comput. Sci. (2018, in print)

    Google Scholar 

  9. Gaiselmann, G., Neumann, M., Holzer, L., Hocker, T., Prestat, M., Schmidt, V.: Stochastic 3D modeling of LSC cathodes based on structural segmentation of FIB-SEM images. Comput. Mater. Sci. 67, 48–62 (2013)

    Article  Google Scholar 

  10. Gaiselmann, G., Thiedmann, R., Manke, I., Lehnert, W., Schmidt, V.: Stochastic 3D modeling of fiber-based materials. Comput. Mater. Sci. 59, 75–86 (2012)

    Article  Google Scholar 

  11. Gaiselmann, G., Neumann, M., Holzer, L., Hocker, T., Prestat, M.R., Schmidt, V.: Stochastic 3D modeling of La\(_{0.6}\)Sr\(_{0.4}\)CoO\(_{3-\delta }\) cathodes based on structural segmentation of FIB-SEM images. Comput. Mater. Sci. 67, 48–62 (2013)

    Article  Google Scholar 

  12. Gaiselmann, G., Neumann, M., Schmidt, V., Pecho, O., Hocker, T., Holzer, L.: Quantitative relationships between microstructure and effective transport properties based on virtual materials testing. AIChE J. 60(6), 1983–1999 (2014)

    Article  Google Scholar 

  13. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7(1), 43–57 (1985)

    Article  MathSciNet  Google Scholar 

  14. Hein, S., Feinauer, J., Westhoff, D., Manke, I., Schmidt, V., Latz, A.: Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D. J. Power Sour. 336, 161–171 (2016)

    Article  Google Scholar 

  15. Kuchler, K., Westhoff, D., Feinauer, J., Mitsch, T., Manke, I., Schmidt, V.: Stochastic model of the 3D microstructure of Li-ion battery cathodes under various cyclical aging secenarios. Model. Simul. Mater. Sci. Eng. 26, 035005 (2018)

    Article  Google Scholar 

  16. Latz, A., Zausch, J.: Thermodynamic consistent transport theory of Li-ion batteries. J. Power Sour. 196, 3296–3302 (2011)

    Article  Google Scholar 

  17. Latz, A., Zausch, J.: Thermodynamic derivation of a Butler-Volmer model for intercalation in Li-ion batteries. Electrochimica Acta 110, 358–362 (2013)

    Article  Google Scholar 

  18. Lautensack, C., Zuyev, S.: Random Laguerre tessellations. Adv. Appl. Probab. 40(3), 630–650 (2008)

    Article  MathSciNet  Google Scholar 

  19. Mościński, J., Bargieł, M., Rycerz, Z., Jacobs, P.: The force-biased algorithm for the irregular close packing of equal hard spheres. Mol. Simul. 3(4), 201–212 (1989)

    Article  Google Scholar 

  20. Münch, B., Holzer, L.: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J. Am. Ceram. Soc. 91(12), 4059–4067 (2008)

    Article  Google Scholar 

  21. Newman, J., Thomas, K., Hafezi, H., Wheeler, D.: Modeling of lithium-ion batteries. J. Power Sour. 119, 838–843 (2003)

    Article  Google Scholar 

  22. Petrich, L., Westhoff, D., Feinauer, J., Finegan, D.P., Daemi, S.R., Shearing, P.R., Schmidt, V.: Crack detection in lithium-ion cells using machine learning. Comput. Mater. Sci. 136, 297–305 (2017)

    Article  Google Scholar 

  23. Pfaffmann, L., Birkenmaier, C., Müller, M., Bauer, W., Mitsch, T., Feinauer, J., Scheiba, F., Hintennach, A., Schleid, T., Schmidt, V., Ehrenberg, H.: Investigation of the electrochemical active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method. J. Power Sourc. 307, 762–771 (2016)

    Article  Google Scholar 

  24. Remmlinger, J., Tippmann, S., Buchholz, M., Dietmayer, K.: Low-temperature charging of lithium-ion cells Part II: model reduction and application. J. Power Sourc. 254, 268–276 (2014)

    Article  Google Scholar 

  25. Stenzel, O., Koster, L., Thiedmann, R., Oosterhout, S., Janssen, R., Schmidt, V.: A new approach to model-based simulation of disordered polymer blend solar cells. Adv. Funct. Mater. 22, 1236–1244 (2012)

    Article  Google Scholar 

  26. Stenzel, O., Pecho, O., Holzer, L., Neumann, M., Schmidt, V.: Predicting effective conductivities based on geometric microstructure characteristics. AIChE J. 62(5), 1834–1843 (2016)

    Article  Google Scholar 

  27. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  Google Scholar 

  28. Westhoff, D., Feinauer, J., Kuchler, K., Mitsch, T., Manke, I., Hein, S., Latz, A., Schmidt, V.: Parametric stochastic 3D model for the microstructure of anodes in lithium-ion power cells. Comput. Mater. Sci. 126, 453–467 (2017)

    Article  Google Scholar 

  29. Westhoff, D., Finegan, D.P., Shearing, P.R., Schmidt, V.: Algorithmic structural segmentation of defective particle systems: a lithium-ion battery study. J. Microsc. 270, 71–82 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Feinauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feinauer, J., Westhoff, D., Kuchler, K., Schmidt, V. (2018). 3D Microstructure Modeling and Simulation of Materials in Lithium-ion Battery Cells. In: Baum, M., Brenner, G., Grabowski, J., Hanschke, T., Hartmann, S., Schöbel, A. (eds) Simulation Science. SimScience 2017. Communications in Computer and Information Science, vol 889. Springer, Cham. https://doi.org/10.1007/978-3-319-96271-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96271-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96270-2

  • Online ISBN: 978-3-319-96271-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics