Skip to main content

More Thoughts on AG–SG Comparisons and SG Scale Factor Determinations

  • Chapter
  • First Online:
Geodynamics and Earth Tides Observations from Global to Micro Scale

Abstract

We revisit a number of details that arise when doing joint AG–SG (absolute gravimeter–superconducting gravimeter) calibrations, focusing on the scale factor determination and the AG mean value that derives from the offset. When fitting SG data to AG data, the choice of which time span to use for the SG data can make a difference, as well as the inclusion of a trend that might be present in the fitting. The SG time delay has only a small effect. We review a number of options discussed recently in the literature on whether drops or sets provide the most accurate scale factor, and how to reject drops and sets to get the most consistent result. Two effects are clearly indicated by our tests, one being to smooth the raw SG 1 s (or similar sampling interval) data for times that coincide with AG drops, the other being a second pass in processing to reject residual outliers after the initial fit. Although drops can usefully provide smaller SG calibration errors compared to using set data, set values are more robust to data problems but one has to use the standard error to avoid large uncertainties. When combining scale factor determinations for the same SG at the same station, the expected gradual reduction of the error with each new experiment is consistent with the method of conflation. This is valid even when the SG data acquisition system is changed, or different AG’s are used. We also find a relationship between the AG mean values obtained from SG to AG fits with the traditional short-term AG (‘site’) measurements usually done with shorter datasets. This involves different zero levels and corrections in the AG versus SG processing. Without using the Micro-g FG5 software it is possible to use the SG-derived corrections for tides, barometric pressure, and polar motion to convert an AG–SG calibration experiment into a site measurement (and vice versa). Finally, we provide a simple method for AG users who do not have the FG5- software to find an internal FG5 parameter that allows us to convert AG values between different transfer heights when there is a change in gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Crossley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crossley, D., Calvo, M., Rosat, S., Hinderer, J. (2019). More Thoughts on AG–SG Comparisons and SG Scale Factor Determinations. In: Braitenberg, C., Rossi, G., Geodynamics and Earth Tides Editor group (eds) Geodynamics and Earth Tides Observations from Global to Micro Scale. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96277-1_10

Download citation

Publish with us

Policies and ethics