Skip to main content

On the Physics Underlying Longitudinal Capillary Recruitment

  • Chapter
  • First Online:
Molecular, Cellular, and Tissue Engineering of the Vascular System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1097))

Abstract

Numerous researchers have found that capillary vessel haematocrit depends on the vasodilatory state of the arterioles. At rest, vessel haematocrit is down to 15 %, suggesting a red blood cell velocity three times higher than the plasma velocity. This finding is analysed in the context of present understanding of propulsion of red blood cells (RBCs) and plasma by means of the arteriovenous pressure gradient. Interfacial forces between the red blood cells and the plasma are proposed as a rational explanation of the observed red blood cell velocities. While the arteriovenous pressure gradient across the capillaries propels the red blood cell and the plasma jointly, interfacial forces along the red blood cell membrane can propel RBCs at the cost of the plasma. Different options are explored for the physical origin of these interfacial forces and oxygen gradients are found to be the most probable source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JL (1989) Colloid transport by interfacial forces. Annu Rev Fluid Mech 21:61

    Article  Google Scholar 

  • Anderson JL, Prieve DC (1991) Diffusiophoresis caused by gradients of strongly adsorbing solutes. Langmuir 7:403–406

    Article  CAS  Google Scholar 

  • Carvalho H, Pittman RN (2008) Longitudinal and radial gradients of PO2 in the hamster cheek pouch microcirculation. Microcirculation 15:215–224

    Article  Google Scholar 

  • Casagrande L (1949) Electroosmosis in soils. Géotechnique 1:159–177

    Article  Google Scholar 

  • Copp SW, Ferreira LF, Herspring KF, Musch TI, Poole DC (2009) The effects of aging on capillary hemodynamics in contracting rat spinotrapezius muscle. Microvasc Res 77:113–119

    Article  Google Scholar 

  • Derjaguin BV, Dukhin SS (1971) Application of thermodynamics of irreversible processes to the electrodiffusion theory of electrokinetic effects. Res Surface Forces 3:169

    Google Scholar 

  • Derjaguin BV, Sidorenkov GP, Zubashchenkov EA, Kiseleva EV (1947) Kinetic phenomena in boundary films of liquids. Kolloidn Zh 9:335–347

    Google Scholar 

  • Derjaguin BV, Dukhin SS, Korotkova AA (1961) Diffusiophoresis in electrolyte solutions and its role in the mechanism of film-formation from rubber latexes by the method of ionic deposition. Kolloidn Zh 23:53

    Google Scholar 

  • Derjaguin BV, Dukhin SS, Koptelova MM (1972) Capillary osmosis through porous partitions and properties of boundary layers of solutions. J Colloid Interface Sci 38:584–595

    Article  Google Scholar 

  • Ebel JP, Anderson JL, Prieve DC (1988) Diffusiophoresis of latex particles in electrolyte gradients. Langmuir 4:396

    Article  CAS  Google Scholar 

  • Florea D, Musa S, Huyghe JM, Wyss HM (2014) Long-range repulsion of colloids driven by ion-exchange and diffusiophoresis. Proc Natl Acad Sci USA 111: 6554–6559

    Article  CAS  Google Scholar 

  • FÃ¥hræus R, Lindqvist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568

    Google Scholar 

  • Frisbee JC, Barclay JK (1998) Microvascular hematocrit and permeability-surface area product in contracting canine skeletal muscle in situ. Microvasc Res 55: 153–164

    Article  CAS  Google Scholar 

  • Freund JB (2013) The flow of red blood cells through a narrow spleen-like slit. Phys Fluids 25:110007

    Google Scholar 

  • Han Y, Weinbaum S, Spaan JAE, Vink H (2006) Large-deformation analysis of the elastic recoil of fibre layers in a brinkman medium with application to the endothelial glycocalyx. J Fluid Mech 554:217–235

    Article  CAS  Google Scholar 

  • Hellums JD (1977) The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue. Microvasc Res 13:131–136

    Article  CAS  Google Scholar 

  • Ke H, Ye S, Carroll RL, Showalter K (2010) Motion analysis of self-propelled Pt-silica particles in hydrogen peroxide solutions. J Phys Chem A 114: 5462–5467

    Article  CAS  Google Scholar 

  • Keh HJ, Weng JC (2001) Diffusiophoresis of colloidal spheres in nonelectrolyte gradients at small but finite péclet numbers. Colloid Polymer Sci 279:305–311

    Article  CAS  Google Scholar 

  • Kiaer T, Kristensen KD (1988) Intracompartmental pressure, PO2, PCO2 and blood flow in the human skeletal muscle. Arch Orthop Trauma Surg 107:114–116

    Article  CAS  Google Scholar 

  • Kindig CA, Poole DC (1998) A comparison of the microcirculation in the rat spinotrapezius and diaphragm muscles. Microvasc Res 57:144–152

    Article  Google Scholar 

  • Kindig CA, Richardson TE, Poole DC (2002) Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer. J Appl Physiol 92:2513–2520

    Article  Google Scholar 

  • Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 237:H481–H490

    CAS  PubMed  Google Scholar 

  • Klitzman B, Damon DN, Gorczynski RJ, Duling BR (1982) Augmented tissue oxygen supply during striated muscle contraction in the hamster. relative contributions of capillary recruitment, functional dilation, and reduced tissue PO2. Circ Res 51:711–721

    Article  CAS  Google Scholar 

  • Krogh A (1919a) The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52:409–415

    Article  CAS  Google Scholar 

  • Krogh A (1919b) The supply of oxygen to the tissue and the regulation of the capillary circulation. J Physiol 52:457–474

    Article  CAS  Google Scholar 

  • Lecoq J, Tiret P, Najac M, Shepherd GM, Greer CA, Charpak S (2009) Odor-evoked oxygen consumption by action potential and synaptic transmission in the olfactory bulb. J Neurosci 29:1424–1433

    Article  CAS  Google Scholar 

  • Lecoq J, Parpaleix A, Roussakis E, Ducros M, Houssen YG, Vinogradov SA, Charpak S (2011) Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat Med 17:893–899

    Article  CAS  Google Scholar 

  • Linderkamp O, Meiselman HJ (1982) Geometric, osmotic, and membrane mechanical properties of density-separated human red cells. Blood 59: 1121–1127

    CAS  PubMed  Google Scholar 

  • Martini P, Pierach A, Schreyer E (1930) Die Strömung des Blutes in engen Gefässen. eine Abweichung vom Poiseuille’schen Gesetz. Deutsches Archiv für klinische Medizin 169:212–222

    Google Scholar 

  • Ndubuizu O, LaManna JC (2007) Brain tissue oxygen concentration measurements. Antioxid Redox Signal 9:1207–1219

    Article  CAS  Google Scholar 

  • Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK, Cao Y, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorod. J Am Chem Soc 126:13425–13431

    Article  Google Scholar 

  • Paxton WF, Sundararajan S, Mallouk TE,  Sen A (2006) Minireview: chemical locomotion. Angew Chem 45:5420 –5429

    Article  CAS  Google Scholar 

  • Poiseuille JLM (1830) Recherches sur les causes du mouvement du sang dans les veines. J Physiol Exp Pathol 10:277–295

    Google Scholar 

  • Poiseuille JLM (1840a) Recherches expérimentales sur ie mouvement des liquides dans les tubes de très petits diamètres; i. influence de la pression sur la quantité de liquide qui traverse les tubes de très petits diamètres. C R Acad Sci 11:961–67

    Google Scholar 

  • Poiseuille JLM (1840b) Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres; ii.influence de la longueur sur la quantité de liquide qui traverse les tubes de très petits diamètres; iii. influence du diamètre sur la quantité de liquide qui traverse les tubes de très petits diamètres. C R Acad Sci 11:1041–1048

    Google Scholar 

  • Poiseuille JLM (1841) Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres; iv. influence de la température sur la quantité de liquide qui traverse les tubes de très petits diamètres. C R Acad Sci 12:112–115

    Google Scholar 

  • Polwaththe-Gallage HN, Saha SC, Sauret E, Flower RL, Gu Y (2015) Numerical inventigation of motion and deformation of a single red blood cell in a stenosed capillary. Int J Comput Methods 12:1540003

    Article  Google Scholar 

  • Poole DC, Musch TI, Kindig CA (1997) In vivo microvascular structural and functional consequences of muscle length changes. Am J Physiol 272:H2107–H2114

    CAS  PubMed  Google Scholar 

  • Poole DC, Copp SW, Hirai DM, Musch TI (2011) Dynamics of muscle microcirculatory and blood–myocyte O2 flux during contractions. Acta Physiol (Oxf) 202:293–310

    Article  CAS  Google Scholar 

  • Poole DC, Copp SW, Ferguson SK, Musch TI (2013) Skeletal muscle capillary function: contemporary observations and novel hypotheses. Exp Physiol 98:1645–1658

    Article  CAS  Google Scholar 

  • Pozrikidis C (2010) Computational hydrodynamics of capsules and biological cells. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pries AR, Ley K, Gaehtgens P (1986) Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 251(6):H1324–32

    CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32:654–667

    Article  CAS  Google Scholar 

  • Ruckenstein E (1981) Can phoretic motion be treated as an interfacial tension gradient driven phenomena? J Colloid Interface Sci 77:83

    Google Scholar 

  • Sabass BC (2012) Active, phoretic motion. Phd dissertation, University of Stuttgart, Department of Physics and Mathematics

    Google Scholar 

  • Sarelius IH, Duling BR (1982) Direct measurement of microvessel hematocrit, red cell flux, velocity and transit time. Am J Physiol 243:H1018–1026

    CAS  PubMed  Google Scholar 

  • Sharan M, Popel AS (2001) A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38: 415–428

    CAS  PubMed  Google Scholar 

  • Shi L, Pan T-W, Glowinski R (2012) Deformation of a single red blood cell in bounded poiseuille flows. Phys Rev E 85:016307

    Article  Google Scholar 

  • Shi N, Nery-Azevedo R, Abdel-Fattah AI, Squires TM (2016) Diffusiophoretic focusing of suspended colloids. Phys Rev Lett 117:258001

    Article  Google Scholar 

  • Skalak R, Branemark P-I (1969) Deformation of red blood cells in capillaries. Science 164(3880):717–719

    Article  CAS  Google Scholar 

  • Secomb TW (2003) Mechanics of RBCs and blood flow in narrow tubes. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Secomb TW, Styp-Rekowska B, Pries AR (2007) Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Ann Biomed Eng 35:755–765

    Article  Google Scholar 

  • Snyder GK, Sheafor BA (1999) RBCs: centerpiece in the evolution of the vertebrate circulatory system. Am Zool 39:189–198

    Article  Google Scholar 

  • Velegol D, Garg A, Guha R, Kar A, Kumar M (2016) Origins of concentration gradients for diffusiophoresis. Soft Matter https://doi.org/10.1039/c6sm00052e

    Article  CAS  Google Scholar 

  • Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes and leucocytes within mammalian capillaries. Circ Res 79:581–589

    Article  CAS  Google Scholar 

  • von Reuss FF (1809) Notice sur un nouvel effet de l’électricité galvanique. Mémoires de la Société Impériale des Naturalistes de l’Université Impériale de Moscou 2:327

    Google Scholar 

  • Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci USA 100:7988–7995

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the STW-foundation, the Technological Branch of the Netherlands Organisation of Scientific Research NWO, and the Ministery of Economic Affairs of the Netherlands, for project 12538, Interfacial aspects of Ionised Media. The author thanks Dr. Sami Musa (University of Limerick and Eindhoven University of Technology) and dr. Orest Shardt (University of Limerick) for enlightening discussions and for commenting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques M. Huyghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huyghe, J.M. (2018). On the Physics Underlying Longitudinal Capillary Recruitment. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-319-96445-4_10

Download citation

Publish with us

Policies and ethics