Skip to main content

Transport Across the Blood-Brain Barrier

  • Chapter
  • First Online:
Molecular, Cellular, and Tissue Engineering of the Vascular System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1097))

Abstract

The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the microenvironment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-borne neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This chapter summarized the unique structures of the BBB; described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB and the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents, and drug carriers; and presented recently developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Recent findings for modulation of the BBB permeability by chemical and physical stimuli were described. Finally, drug delivery strategies through specific trans-BBB routes were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (1992) Comparative physiology of the blood-brain barrier. In: Physiology and pharmacology of the blood-brain barrier. Springer, Heidelberg

    Google Scholar 

  • Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200(6):629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbott NJ, Patabendige AK, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neuorbiol Dis 37:13

    Article  CAS  Google Scholar 

  • Adamson RH, Liu B, Fry GN, Rubin LL, Curry FE (1998) Microvascular permeability and number of tight junctions are modulated by cAMP. Am J Phys 274(6 Pt 2):H1885–H1894

    CAS  Google Scholar 

  • Adamson RH, Lenz JE, Zhang X, Adamson GN, Weinbaum S, Curry FE (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol Lond 557:889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allt G, Lawrenson JG (1997) Is the pial microvessel a good model for blood-brain barrier studies? Brain Res Rev 24:67

    Article  CAS  PubMed  Google Scholar 

  • Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, Squire JM (2011) Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys J 101(5):1046–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K, Rostgaard J, Bates DO, Knupp C, Squire JM (2012) 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19(4):343–351

    PubMed  Google Scholar 

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991. https://doi.org/10.1084/jem.20142290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker Erik NTP, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AWJ, Weller RO, Carare RO (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36:181–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin SA, Fugaccia I, Brown DR, Brown LV, Scheff SW (1996) Blood-brain barrier breach following cortical contusion in the rat. J Neurosurg 85(3):476

    Article  CAS  PubMed  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1

    Article  CAS  PubMed  Google Scholar 

  • Balyasnikova IV, Pelligrino DA, Greenwood J, Adamson P, Dragon S, Raza H, Galea E (2000) Cyclic adenosine monophosphate regulates the expression of the intercellular adhesion molecule and the inducible nitric oxide synthase in brain endothelial cells. J Cereb Blood Flow Metab 20(4):688–699

    Article  CAS  PubMed  Google Scholar 

  • Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatouros P, Corwin F, Marmarou C, Dunbar J (2000) The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir Suppl 76:125

    CAS  PubMed  Google Scholar 

  • Begley DJ (2007) Structure and function of the blood-brain barrier. In: Enhancement in drug delivery. CRC Press, Boca Raton, p 575

    Google Scholar 

  • Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91(6):2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodor N, Farag HH, Brewster ME (1981) Site-specific, sustained release of drugs to the brain. Science 214(4527):1370

    Article  CAS  PubMed  Google Scholar 

  • Borlongan CV, Emerich DF (2003) Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res Bull 60(3):297

    Article  CAS  PubMed  Google Scholar 

  • Boveri M, Berezowski V, Price A, Slupek S, Lenfant AM, Benaud C, Hartung T, Cecchelli R, Prieto P, Dehouck MP (2005) Induction of blood-brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia 51(3):187

    Article  PubMed  Google Scholar 

  • Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 14(4):396

    Article  CAS  PubMed  Google Scholar 

  • Brewster ME, Raghavan K, Pop E, Bodor N (1994) Enhanced delivery of ganciclovir to the brain through the use of redox targeting. Antimicrob Agents Chemother 38(4):817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brown PD, Davies SL, Speake T, Millar ID (2004a) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Egleton RD, Davis TP (2004b) Mannitol opening of the blood–brain barrier: regional variation in the permeability of sucrose, but not 86Rb+ or albumin. Brain Res 1014(1–2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Morris AP, O'Neil RG (2007) Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res 1130(1):17

    Article  CAS  PubMed  Google Scholar 

  • Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carare R, Bernardes-Silva M, Newman T, Page A, Nicoll J, Perry V, Weller R (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144

    Article  CAS  PubMed  Google Scholar 

  • Cernak I, Vink R, Zapple DN, Cruz MI, Ahmed F, Chang T, Fricke ST, Faden AI (2004) The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis 17(1):29

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Sheeran PS, Wu SY, Olumolade OO, Dayton PA, Konofagou EE (2013) Targeted drug delivery with focused ultrasound-induced blood–brain barrier opening using acoustically-activated nanodroplets. J Control Release 172(3):795–804

    Article  CAS  PubMed  Google Scholar 

  • Chu PC, Chai WY, Hsieh HY et al (2013) Pharmacodynamic analysis of magnetic resonance imaging-monitored focused ultrasound-induced blood–brain barrier opening for drug delivery to brain tumors. Biomed Res Int 2013:627496

    PubMed  PubMed Central  Google Scholar 

  • Cornford EM, Young D, Paxton JW, Sofia RD (1992) Blood-brain barrier penetration of felbamate. Epilepsia 33:944

    Article  CAS  PubMed  Google Scholar 

  • Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Cucullo L, McAllister MS, Kight K, Krizanac-Bengez L, Marroni M, Mayberg MR, Stanness KA, Janigro D (2002) A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res 951(2): 243

    Article  CAS  PubMed  Google Scholar 

  • Curley CT, Sheybani ND, Bullock TN, Price RJ (2017) Focused ultrasound immunotherapy for central nervous system pathologies: challenges and opportunities. Theranostics 7(15):3608–3623

    Article  PubMed  PubMed Central  Google Scholar 

  • Curry FE (1983) Mechanics and thermodynamics of transcapillary exchange. In: Handbook of physiology. The cardiovascular system. The American Physiology Society, Bethesda

    Google Scholar 

  • Dean RL, Emerich DF, Hasler BP, Bartus RT (1999) Cereport (RMP-7) increases carboplatin levels in brain tumors after pretreatment with dexamethasone. Neuro-Oncology 1(4):268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25(1):59

    Article  PubMed  Google Scholar 

  • Demeuse P, Kerkhofs A, Struys-Ponsar C, Knoops B, Remacle C, de Aguilar PV (2002) Compartmentalized coculture of rat brain endothelial cells and astrocytes: a syngenic model to study the blood-brain barrier. J Neurosci Methods 121(1):21

    Article  PubMed  Google Scholar 

  • Deng CX (2010) Targeted drug delivery across the blood–brainbarrierusing ultrasound technique. Ther Deliv 1(6):819–848

    Article  CAS  PubMed  Google Scholar 

  • Dietrich WD, Alonso O, Halley M (1994) Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 11(3):289

    Article  CAS  PubMed  Google Scholar 

  • Doolittle ND, Abrey LE, Ferrari N, Hall WA, Laws ER, McLendon RE, Muldoon LL, Peereboom D, Peterson DR, Reynolds CP, Senter P, Neuwelt EA (2002) Targeted delivery in primary and metastatic brain tumors: summary report of the seventh annual meeting of the blood-brain barrier disruption consortium. Clin Cancer Res 8(6):1702

    PubMed  Google Scholar 

  • Easton AS, Fraser PA (1994) Variable restriction of albumin diffusion across inflamed cerebral microvessels of the anaesthetized rat. J Physiol 475:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easton AS, Sarker MH, Fraser PA (1997) Two components of blood-brain barrier disruption in the rat. J Physiol 503(3):613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich P (1885) Das sauerstufbudurfnis des organismus. Hireschwald, Berlin

    Google Scholar 

  • Elsinga PH, Hendrikse NH, Bart J, Vaalburg W, van Waarde A (2004) PET studies on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding of drugs within the CNS. Curr Pharm Des 10:1493

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B, Coisne C (2011) Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8(4):10–1186

    Google Scholar 

  • Engvall E (1995) Structure and function of basement membranes. Int J Dev Biol 39(5):781

    CAS  PubMed  Google Scholar 

  • Fan J, Fu BM (2016) Quantification of malignant breast cancer cell MDA-MB-231 transmigration across brain and lung microvascular endothelium. Ann Biomed Eng 44(7):2189–2201

    Article  PubMed  Google Scholar 

  • Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol 64(6):575

    Article  CAS  PubMed  Google Scholar 

  • Franke H, Galla HJ, Beuckmann CT (1999) An improved low-permeability in vitro-model of the blood-brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 818(1):65

    Article  CAS  PubMed  Google Scholar 

  • Fraser PA, Dallas AD, Davies S (1990) Measurement of filtration coefficient in single cerebral microvessels of the frog. J Physiol 423:343–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu BM, Chen B (2003) A model for the structural mechanisms in the regulation of microvessel permeability by junction strands. ASME J Biomech Eng 125:620

    Article  Google Scholar 

  • Fu BM, Shen S (2004) Acute VEGF effect on solute permeability of mammalian microvessels in vivo. Microvasc Res 68:51

    Article  CAS  PubMed  Google Scholar 

  • Fu BM, Tsay R, Curry FE, Weinbaum S (1994) A junction-orifice-entrance layer model for capillary permeability: application to frog mesenteric capillaries. ASME J Biomech Eng 116:502

    Article  CAS  Google Scholar 

  • Fu BM, Shen S, Chen B (2006) Structural mechanisms in the abolishment of VEGF-induced microvascular hyperpermeability by cAMP. J Biomech Eng 128(3):317–328

    PubMed  Google Scholar 

  • Fu BM, Yang J, Cai B, Fan J, Zhang L, Zeng M (2015) Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo. Sci Rep 5:15697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda K, Tanno H, Okimura Y, Nakamura M, Yamaura A (1995) The blood-brain barrier disruption to circulating proteins in the early period after fluid percussion brain injury in rats. J Neurotrauma 12(3):315

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa K, Mochizuki N (2005) Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 25(1):136–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37(1):48

    Article  CAS  PubMed  Google Scholar 

  • Gaber MW, Yuan H, Killmar JT, Naimark MD, Kiani MF, Merchant TE (2004) An intravital microscopy study of radiation-induced changes in permeability and leukocyte-endothelial cell interactions in the microvessels of the rat pia mater and cremaster muscle. Brain Res Protocol 13:1

    Article  CAS  Google Scholar 

  • Gaillard PJ, de Boer AG (2000) Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci 12(2):95

    Article  CAS  PubMed  Google Scholar 

  • Goldmann E (1913) Vitalfarbung am zentralnervensystem. Abhandl Kongil preuss Akad Wiss, vol 1, pp. 1

    Google Scholar 

  • Gosk S, Vermehren C, Storm G, Moos T (2004) Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab 24(11):1193

    Article  CAS  PubMed  Google Scholar 

  • Greenwood J, Hammarlund-Udenaes M, Jones HC, Stitt AW, Vandenbrouke RE, Romero IA, Campbell M, Fricker G, Brodin B, Manninga H, Gaillard PJ, Schwaninger M, Webster C, Wicher KB, Khrestchatisky M (2017) Current research into brain barriers and the delivery of therapeutics for neurological diseases: a report on CNS barrier congress London, UK, 2017. Fluids Barriers CNS 14(1):31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haeren RH, van de Ven SE, van Zandvoort MA, Vink H, van Overbeeke JJ, Hoogland G, Rijkers K (2016) Assessment and imaging of the cerebrovascular glycocalyx. Curr Neurovasc Res 13(3):249–260

    Article  PubMed  Google Scholar 

  • Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, Dehouck MP (2004) Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315(2):157

    Article  PubMed  Google Scholar 

  • Haseloff RF, Blasig IE, Bauer HC, Bauer H (2005) In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25(1):25

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173

    Article  CAS  PubMed  Google Scholar 

  • He P, Curry FE (1993) Differential actions of cAMP on endothelial [Ca2+]i and permeability in microvessels exposed to ATP. Am J Phys 265(3 Pt 2): H1019–H1023

    CAS  Google Scholar 

  • Hemmila JM, Drewes LR (1993) Glucose transporter (GLUT1) expression by canine brain microvessel endothelial cells in culture: an immunocytochemical study. Adv Exp Med Biol 331:13

    Article  CAS  PubMed  Google Scholar 

  • Hervé F, Ghinea N, Scherrmann JM (2008) CNS delivery via adsorptive transcytosis. AAPS J 10(3):455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220(3):640

    Article  CAS  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105(3):445

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33(46):18190–18199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karyekar CS, Fasano A, Raje S, Lu RL, Dowling TC, Eddington ND (2003) Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J Pharm Sci 92(2):414

    Article  CAS  PubMed  Google Scholar 

  • Kay GG (2000) The effects of antihistamines on cognition and performance. J Allergy Clin Immunol 105:S622

    Article  CAS  PubMed  Google Scholar 

  • Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O (2004) Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 30(5):415

    Article  PubMed  Google Scholar 

  • Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, Kim KW (2006) Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 39(4):339

    CAS  PubMed  Google Scholar 

  • Kinoshita M (2006) Targeted drug delivery to the brain using focused ultrasound. Top Magn Reson Imaging 17(3):209

    Article  PubMed  Google Scholar 

  • Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378

    Article  CAS  PubMed  Google Scholar 

  • Konofagou EE (2012) Optimization of the ultrasound-induced blood–brain barrier opening. Theranostics 2(12):1223–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus J, Voigt K, Schuller AM, Scholz M, Kim KS, Schilling M, Schabitz WR, Oschmann P, Engelhardt B (2008) Interferon-beta stabilizes barrier characteristics of the blood-brain barrier in four different species in vitro. Mult Scler 14(6):843

    Article  CAS  PubMed  Google Scholar 

  • Kroll RA, Neuwelt EA (1998) Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42(5):1083

    Article  CAS  PubMed  Google Scholar 

  • Kumagai AK, Eisenberg JB, Pardridge WM (1987) Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries.Model system of blood-brain barrier transport. J Biol Chem 262(31):15214

    CAS  PubMed  Google Scholar 

  • de Lange EC, de Boer BA, Breimer DD (1999) Microdialysis for pharmacokinetic analysis of drug transport to the brain. Adv Drug Deliv Rev 36:211

    Article  PubMed  Google Scholar 

  • Lawrenson JG, Reid AR, Allt G (1997) Molecular characteristics of pial microvessels of the rat optic nerve. Can pial microvessels be used as a model for the blood-brain barrier? Cell Tissue Res 288:259–265

    Article  CAS  PubMed  Google Scholar 

  • Lewandowsky M (1900) Zur lehre von der cerebrospinalflussigkeit. Z Klin Med 40:480

    Google Scholar 

  • Li G, Fu BM (2011) An electro-diffusion model for the blood-brain barrier permeability to charged molecule. ASME J Biomech Eng 133(2):0210

    Article  Google Scholar 

  • Li G, Simon M, Shi Z, Cancel L, Tarbell JM, Morrison B, Fu BM (2010a) Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery. Ann Biomed Eng 38(8):2499

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Yuan W, Fu BM (2010b) A model for water and solute transport across the blood-brain barrier. J Biomech 43(11):2133

    Article  PubMed  Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY (2008) Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 29(10):1509

    Article  CAS  PubMed  Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12(9–10):635

    Article  CAS  PubMed  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. https://doi.org/10.1038/nature14432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak M, Fung L, Strasser JF, Saltzman WM (1995) Distribution of drugs following controlled delivery to the brain interstitium. J Neuro-Oncol 26(2):91

    Article  CAS  Google Scholar 

  • Malina KC, Cooper I, Teichberg VI (2009) Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Brain Res 1284:12

    Article  CAS  Google Scholar 

  • Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86(1):279–367

    Article  CAS  PubMed  Google Scholar 

  • Meyer J, Mischeck U, Veyhl M, Henzel K, Galla HJ (1990) Blood-brain barrier characteristic enzymatic properties in cultured brain capillary endothelial cells. Brain Res 514(2):305

    Article  CAS  PubMed  Google Scholar 

  • Miller G (2002) Drug targeting. Breaking down barriers. Science 297(5584):1116

    Article  CAS  PubMed  Google Scholar 

  • Miosge N (2001) The ultrastructural composition of basement membranes in vivo. Histol Histopathol 16(4):1239

    CAS  PubMed  Google Scholar 

  • Montagne A, Zhao Z, Zlokovic BV (2017) Alzheimer's disease: a matter of blood-brain barrier dysfunction? J Exp Med 214(11):3151–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody DM (2006) The blood-brain barrier and blood-cerebral spinal fluid barrier. Semin Cardiothorac Vasc Anesth 10(2):128

    Article  PubMed  Google Scholar 

  • Moore TM, Chetham PM, Kelly JJ, Stevens T (1998) Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. Am J Phys 275(2 Pt 1):L203–L222

    CAS  Google Scholar 

  • Nag S, Begley DJ (2005) Blood-brain barrier, exchange of metabolites and gases. In: Pathology and genetics. Cerebrovascular diseases. ISN Neuropath. Press, Basel

    Google Scholar 

  • Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54(1):131

    Article  PubMed  Google Scholar 

  • Nhan T, Burgess A, Cho EE, Stefanovic B, Lilge L, Hynynen K (2013) Drug delivery to the brain by focused ultrasound induced blood–brain barrier disruption: quantitative evaluation of enhanced permeability of cerebral vasculature using two-photon microscopy. J Control Release 172(1):274–280

    Article  CAS  PubMed  Google Scholar 

  • Nicolazzo JA, Charman SA, Charman WN (2006) Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol 58:281

    Article  CAS  PubMed  Google Scholar 

  • Ohlin KE, Francardo V, Lindgren HS, Sillivan SE, O'Sullivan SS, Luksik AS, Vassoler FM, Lees AJ, Konradi C, Cenci MA (2011) Vascular endothelial growth factor is upregulated by L-dopa in the parkinsonian brain: implications for the development of dyskinesia. Brain 134(Pt 8):2339–2357

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409

    Article  CAS  PubMed  Google Scholar 

  • Omidi Y, Campbell L, Barar J, Connell D, Akhtar S, Gumbleton M (2003) Evaluation of the immortalised mouse brain capillary endothelial cell line, bEnd3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res 990(1–2):95

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (1998) CNS drug design based on principles of blood-brain barrier transport. J Neurochem 70:1781

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2005) Molecular biology of the blood-brain barrier. Mol Biotechnol 30(1):57

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24:1733

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2017) Delivery of biologics across the blood-brain barrier with molecular trojan horse technology. BioDrugs 31(6):503–519

    Article  CAS  PubMed  Google Scholar 

  • Park J, Fan Z, Kumon RE, El-Sayed ME, Deng CX (2010) Modulation of intracellular Ca2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation. Ultrasound Med Biol 36(7):1176–1187

    Article  PubMed  PubMed Central  Google Scholar 

  • Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J (2008) The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J Neurochem 107(5):1358

    Article  CAS  PubMed  Google Scholar 

  • Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56:1695

    Article  CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34(1):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero IA, Radewicz K, Jubin E, Michel CC, Greenwood J, Couraud PO, Adamson P (2003) Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci Lett 344(2):112

    Article  CAS  PubMed  Google Scholar 

  • Rousselle C, Clair P, Smirnova M, Kolesnikov Y, Pasternak GW, Gac-Breton S, Rees AR, Scherrmann JM, Temsamani J (2003) Improved brain uptake and pharmacological activity of dalargin using a peptide-vector-mediated strategy. J Pharmacol Exp Ther 306(1): 371

    Article  CAS  PubMed  Google Scholar 

  • Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ, Bard F (1991) A cell-culture model of the blood-brain-barrier. J Cell Biol 115(6):1725–1735

    Article  CAS  PubMed  Google Scholar 

  • Sahagun G, Moore SA, Hart MN (1990) Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. Am J Phys 259(1 Pt 2):H162

    CAS  Google Scholar 

  • Salvetti F, Cecchetti P, Janigro D, Lucacchini A, Benzi L, Martini C (2002) Insulin permeability across an in vitro dynamic model of endothelium. Pharm Res 19(4):445

    Article  CAS  PubMed  Google Scholar 

  • Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L (2006) Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res 1109:1

    Article  CAS  PubMed  Google Scholar 

  • Sawada GA, Williams LR, Lutzke BS, Raub TJ (1999) Novel, highly lipophilic antioxidants readily diffuse across the blood-brain barrier and access intracellular sites. J Pharmacol Exp Ther 288(3):1327

    CAS  PubMed  Google Scholar 

  • Sawchuk RJ, Elmquist WF (2000) Microdialysis in the study of drug transporters in the CNS. Adv Drug Deliv Rev 45:295

    Article  CAS  PubMed  Google Scholar 

  • Sayner SL (2011) Emerging themes of cAMP regulation of the pulmonary endothelial barrier. Am J Physiol Lung Cell Mol Physiol 300(5):L667–L678

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuetz EG, Schinkel AH, Relling MV, Schuetz JD (1996) P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci U S A 93:4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze C, Firth JA (1992) Interendothelial junctions during blood-brain-barrier development in the rat - morphological-changes at the level of individual tight junctional contacts. Dev Brain Res 69(1):85

    Article  CAS  Google Scholar 

  • Setiadi A, Korim WS, Elsaafien K, Yao ST (2017) The role of the blood-brain barrier in hypertension. Exp Physiol 103(3):337–342

    Article  PubMed  CAS  Google Scholar 

  • Shashoua VE, Hesse GW (1996) N-docosahexaenoyl, 3 hydroxytyramine: a dopaminergic compound that penetrates the blood-brain barrier and suppresses appetite. Life Sci 58(16):1347

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Zeng M, Sun Y, Fu BM (2014a) Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy. J Biomech Eng 136(3):031005

    Article  PubMed  Google Scholar 

  • Shi L, Zeng M, Fu BM (2014b) Temporal effects of vascular endothelial growth factor and 3,5-cyclic monophosphate on blood-brain barrier solute permeability in vivo. J Neurosci Res 92(12):1678–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Palacio-Mancheno P, Badami J, Shin DW, Zeng M, Cardoso L, Tu R, Fu BM (2014c) Quantification of transient increase of the blood-brain barrier permeability to macromolecules by optimized focused ultrasound combined with microbubbles. Int J Nanomedicine 18(9):4437–4448

    Google Scholar 

  • Shimizu S (2008) A novel approach to the diagnosis and management of meralgia paresthetica. Neurosurgery 63(4):E820

    Article  PubMed  Google Scholar 

  • DW Shin, N Khadka, J Fan, M Bikson, BM Fu (2016) Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo SPIE Medical Imaging Conference, Feb. 27-March 3, 2016, San Diego, CA, USA

    Google Scholar 

  • Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23(27):9254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith QR (2000) Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 130:1016

    Article  Google Scholar 

  • Soga N, Connolly JO, Chellaiah M, Kawamura J, Hruska KA (2001) Rac regulates vascular endothelial growth factor stimulated motility. Cell Commun Adhes 8(1):1

    Article  CAS  PubMed  Google Scholar 

  • Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel CC (2001) Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136(3):239

    Article  CAS  PubMed  Google Scholar 

  • Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, Pirko I, Seroogy KB, Johnson AJ (2010 Jan 15) CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. J Immunol 184(2):1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Thompson SE, Cavitt J, Audus KL (1994) Leucine-enkephalin effects on paracellular and transcellular permeation pathways across brain microvessel endothelial-cell monolayers. J Cardiovasc Pharmacol 24(5):818

    Article  CAS  PubMed  Google Scholar 

  • Tsou YH, Zhang XQ, Zhu H, Syed S, Xu X (2017) Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small

    Google Scholar 

  • Tyagi N, Moshal KS, Sen U, Vacek TP, Kumar M, Hughes WM Jr, Kundu S, Tyagi SC (2009) H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal 11(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno M, Sakamoto H, Liao YJ, Onodera M, Huang CL, Miyanaka H, Nakagawa T (2004) Blood-brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats. Histochem Cell Biol 122(2):131

    Article  CAS  PubMed  Google Scholar 

  • de Vries HE, BlomRoosemalen MCM, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J (1996) The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64(1):37

    Article  PubMed  Google Scholar 

  • Wang R, Ashwal S, Tone B, Tian HR, Badaut J, Rasmussen A, Obenaus A (2007) Albumin reduces blood-brain barrier permeability but does not alter infarct size in a rat model of neonatal stroke. Pediatr Res 62:261

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Ocalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107(Pt 5):1347–1357

    CAS  PubMed  Google Scholar 

  • Wolburg-Buchholz K, Mack AF, Steiner E, Pfeiffer F, Engelhardt B, Wolburg H (2009) Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol 18(2):219

    Article  CAS  Google Scholar 

  • Yang FY, Lin YS, Kang KH, Chao TK (2011) Reversible blood–brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. J Control Release 150(1):111–116

    Article  CAS  PubMed  Google Scholar 

  • Yoder EJ (2002) Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line. Glia 38(2):137

    Article  PubMed  Google Scholar 

  • Yoon JH, Lee ES, Jeong Y (2017) In vivo imaging of the cerebral endothelial glycocalyx in mice. J Vasc Res 54(2):59–67. https://doi.org/10.1159/000457799 Epub 2017 Apr 1

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Lv Y, Zeng M, Fu BM (2009) Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc Res 77:166

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Li G, Fu BM (2010a) Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann Biomed Eng 38(4):1463

    Article  PubMed  Google Scholar 

  • Yuan W, Li G, Zeng M, Fu BM (2010b) Modulation of the blood-brain barrier permeability by plasma glycoprotein orosomucoid. Microvasc Res 80(1):148–157

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pardridge WM (2001) Rapid transferrin efflux from brain to blood across the blood-brain barrier. J Neurochem 76:1597

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li CS, Ye YY, Johnson K, Poe J, Johnson S, Bobrowski W, Garrido R, Madhu C (2006) Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Drug Metab Dispos 34(11):1935

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Fu BM, Zhang ZJ (2017) Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv 24(1):1037–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlokovic BV, Begley DJ, Djuricic BM, Mitrovic DM (1986) Measurement of solute transport across the blood-brain barrier in the perfused Guinea pig brain: method and application to N-methyl-alpha-aminoisobutyric acid. J Neurochem 46:1444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author would like to thank the funding support from the National Institutes of Health RO1NS101362-01 and U54CA132378-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingmei M. Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, B.M. (2018). Transport Across the Blood-Brain Barrier. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-319-96445-4_13

Download citation

Publish with us

Policies and ethics