Skip to main content

On Kernel Smoothing with Gaussian Subordinated Spatial Data

  • Conference paper
  • First Online:
Nonparametric Statistics (ISNPS 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 250))

Included in the following conference series:

  • 1085 Accesses

Abstract

We address estimation of a deterministic function μ, that is the mean of a spatial process y(s) in a nonparametric regression context. Here s denotes a spatial coordinate in \({R}_+^2.\) Given k = n 2 observations, the aim is to estimate μ assuming that y has finite variance, and that the regression errors \(\epsilon (\mathbf {s}) = y(\mathbf {s}) - {E}\left \{ y(\mathbf {s})\right \}\) are Gaussian subordinated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beran, J., Feng, Y., Ghosh, S., & Kulik, R. (2013). Long memory processes - probabilistic properties and statistical models. Heidelberg: Springer.

    Google Scholar 

  2. Beran, J., Ghosh, S., & Schell, D. (2009). Least square estimation for stationary lattice processes with long-memory. Journal of Multivariate Analysis, 100, 2178–2194.

    Google Scholar 

  3. Bierens, H. J. (1983). Uniform consistency of kernel estimators of a regression function under generalized conditions. Journal of the American Statistical Association, 77, 699–707.

    Google Scholar 

  4. Breuer, P., & Major, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. Journal of Multivariate Analysis, 13, 425–441.

    Google Scholar 

  5. Csörgö, S., & Mielniczuk, J. (1995). Nonparametric regression under long-range dependent normal errors. The Annals of Statistics, 23, 1000–1014.

    Google Scholar 

  6. Csörgö, S., & Mielniczuk, J. (1996). The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probability Theory and Related Fields, 104, 15–25.

    Google Scholar 

  7. Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. The Annals of Statistics, 25, 1–37.

    Google Scholar 

  8. Diggle, P. J. (1990). Time series: A biostatistical introduction. Oxford: Oxford University Press.

    Google Scholar 

  9. Dobrushin, R. L., & Major, P. (1979). Non-central limit theorems for non-linear functional of Gaussian fields. Probability Theory and Related Fields, 50, 27–52.

    Google Scholar 

  10. Ghosh, S. (2009). The unseen species number revisited. Sankhya-B, 71, 137–150.

    Google Scholar 

  11. Ghosh, S. (2015). Computation of spatial Gini coefficients. Communications in Statistics - Theory and Methods, 44, 4709–4720.

    Google Scholar 

  12. Ghosh, S. (2015). Surface estimation under local stationarity. Journal of Nonparametric Statistics, 27, 229–240.

    Google Scholar 

  13. Ghosh, S. (2018). Kernel smoothing. Principles, methods and applications. Hoboken: Wiley.

    Google Scholar 

  14. Ghosh, S., & Draghicescu, D. (2002). An algorithm for optimal bandwidth selection for smooth nonparametric quantiles and distribution functions. In Y. Dodge (Ed.), Statistics in industry and technology: Statistical data analysis based on the L 1-norm and related methods (pp. 161–168). Basel: Birkhäuser Verlag.

    Google Scholar 

  15. Ghosh, S., & Draghicescu, D. (2002). Predicting the distribution function for long-memory processes. International Journal of Forecasting, 18, 283–290.

    Google Scholar 

  16. Major, P. (1981). Limit theorems for non-linear functionals of Gaussian sequences. Probability Theory and Related Fields, 57, 129–158.

    Google Scholar 

  17. Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33, 1065–1076.

    Google Scholar 

  18. Priestley, M. B., & Chao, M. T. (1972). Non-parametric function fitting. Journal of the Royal Statistical Society. Series B, 34, 385–392.

    Google Scholar 

  19. Robinson, P. M. (1997). Large-sample inference for nonparametric regression with dependent errors. The Annals of Statistics, 25, 2054–2083.

    Google Scholar 

  20. Silverman, B. W. (1986). Density estimation. New York: Chapman and Hall.

    Google Scholar 

  21. Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Probability Theory and Related Fields, 31, 287–302.

    Google Scholar 

  22. Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Probability Theory and Related Fields, 50, 53–83.

    Google Scholar 

  23. Wand, M. P., & Jones, M. C. (1995). Kernel smoothing. London: Chapman and Hall.

    Google Scholar 

  24. Wu, F. (2016). On Optimal Surface Estimation under Local Stationarity - An Application to Swiss National Forest Inventory Data. Master thesis 2016, ETH, Zürich.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, S. (2018). On Kernel Smoothing with Gaussian Subordinated Spatial Data. In: Bertail, P., Blanke, D., Cornillon, PA., Matzner-Løber, E. (eds) Nonparametric Statistics. ISNPS 2016. Springer Proceedings in Mathematics & Statistics, vol 250. Springer, Cham. https://doi.org/10.1007/978-3-319-96941-1_19

Download citation

Publish with us

Policies and ethics