Skip to main content

Crop Wild Relatives of Root Vegetables in North America

  • Chapter
  • First Online:
North American Crop Wild Relatives, Volume 2

Abstract

Root and tuber crops are staples in diets across the world. They are favored due to a large yield associated with the small acreage needed to grow. Generally, they tend to be fairly robust to insect and disease pests and have historically been used as starvation food. Some root and tuber crops, such as potato, sweet potato, or cassava, are the primary source of daily calories for many cultures worldwide. Some tuber crops are only partially domesticated, facilitating the use of crop wild relatives (CWR). Many different cultures have their favorite root crops, but culinary preparation techniques often allow for different tubers to be used, making the acceptance of these crops fairly rapid. Here, we explore the origins and uses of eight tuber and root crops that are important to world diets and have many related wild species in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AAFC Plant Gene Resources of Canada (2017) Germplasm Resources Information Network-Canadian Version (GRIN-CA) database. Plant Gene Resources of Canada, Saskatoon, SK. http://pgrc3.agr.gc.ca/search_grinca-recherche_rirgc_e.html. Accessed 18 Jan 2017

  • Alessandro MS, Galmarini CR, Iorizzo M, Simon PW (2013) Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theor Appl Genet 126:415–423

    Article  PubMed  Google Scholar 

  • Al-Khatib K, Miller JF (2000) Registration of four genetic stocks of sunflower resistant to imidazolinone herbicides. Crop Sci 40:869–870

    Google Scholar 

  • Allem AC, Mende RA, Salomã AN, Burl ML (2001) The primary gene pool of cassava (Manihot esculenta Crantz subspecies esculenta, Euphorbiaceae). Euphytica 120:127–132

    Article  CAS  Google Scholar 

  • Austin DF (1978) The Ipomoea batatas complex-I. taxonomy. Bull Torrey Bot Club 105:114–129

    Article  Google Scholar 

  • Austin DF, Huáman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45:3–38

    Article  Google Scholar 

  • Bamberg J, del Rio A, Kinder D, Louderback L, Pavlik B, Fernandez C (2016) Core collections of potato (Solanum) species native to the USA. Am J Potato Res 93(6):564–571

    Article  Google Scholar 

  • Banga O (1957) Origin of the European cultivated carrot. Euphytica 6(1):54–63

    Google Scholar 

  • BGCI (2017) PlantSearch database. http://bgci.org/plant_search.php. Accessed online. Accessed 10 Aug 2017

  • Biancardi E (2005) Brief history of sugar beet cultivation. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science, Enfield, pp 3–9

    Chapter  Google Scholar 

  • Bock DG, Kane NC, Ebert DP, Rieseberg LH (2014) Genome skimming reveals the origin of the Jerusalem artichoke tuber crop species: neither from Jerusalem nor an Artichoke. New Phytol 201:1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Bradbury EJ, Duputié A, Delêtre M, Roullier C, Narváez-Trujillo A, Manu-Aduening JA, Emshwiller E, McKey D (2013) Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae). Am J Bot 100:857–866

    Article  PubMed  Google Scholar 

  • Bradshaw JE, Bryan GJ, Ramsay G (2006) Genetic resources (including wild and cultivated Solanum species) and progress in their utilization in potato breeding. Potato Res 49:49–65

    Article  Google Scholar 

  • Bronson B (1966) Roots and the subsistence of the ancient Maya. Southwest J Anthropol 22(3):251–279

    Article  Google Scholar 

  • Brookes R (1763) The natural history of vegetables, London

    Google Scholar 

  • Camadro E, Cauhépé MA, Simon PW (2007) Geographical distribution of wild Daucus species in the natural grasslands of the Argentinian pampas. Genet Resour Crop Evol 54:855–863

    Article  Google Scholar 

  • Camadro EL, Cauhépé MA, Simon PW (2008) Compatibility relations between the edible carrot Daucus carota and D. pusillus, a related wild species from the Argentinian Pampas. Euphytica 159:103–109

    Article  Google Scholar 

  • Castañeda-Álvarez NP, de Haan S, Juárez H, Khoury CK, Achicanoy HA, Sosa CC et al (2015) Ex situ conservation priorities for the wild relatives of potato (Solanum L. Section Petota). PLoS One 10(4):e0122599. https://doi.org/10.1371/journal.pone.0122599. pmid:2592371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Zhou WG, Gao CF, Lan K, Gao Y, Wu QY (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84(5):777–781

    Article  CAS  Google Scholar 

  • CIAT (2006) CIAT Annual Report 2006. CIAT, Cali, Colombia

    Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci. https://doi.org/10.2135/cropsci2016.10.0885

  • ECOS (2016) Environmental conservation online system. US Fish & Wildlife Service. https://ecos.fws.gov/ecp/. Accessed 29 Aug 2017

  • FAO (2014) FAOstat Retrieved Nov, 2016

    Google Scholar 

  • Ghirardini MP, Carli M, Del Vecchio N, Rovati A, Cova O et al (2007) The importance of a taste. A comparative study on wild food plant consumption in twenty-one local communities in Italy. J Ethnobiol Ethnomed 3(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Global Crop Diversity Trust (2014) GENESYS. Available: http://www.croptrust.org/content/global-information-system. Accessed 18 Jan 2017

  • Grzebelus D, Baranski R, Spalik K, Allender C, Simon PW (2011) Daucus. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 91–113

    Chapter  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Harlan JR, de Wet JM (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hershey C (2010) A global conservation strategy for cassava (Manihot esculenta) and wild Manihot species. 98. Available from http://www.croptrustorg/documents/cropstrategies/cassava%20strategypdf. Accessed Dec 2010

  • Hodgkin T, Hajjar R (2008) Using crop wild relatives for crop improvement: trends and perspectives. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo J, Dulloo E, Turok J (eds) Crop wild relative conservation and use. CABI Publishing, Wallingford, pp 535–548

    Google Scholar 

  • Hoes JA, Putt ED, Enns H (1973) Resistance to Verticillium wilt in collections of wild helianthus in North America. Phytopathology 63:1517–1520

    Article  Google Scholar 

  • Hulke BS, Miller JF, Gulya TJ, Vick BA (2010) Registration of the oilseed sunflower genetic stocks HA 458, HA 459, and HA 460 possessing genes for resistance to downy mildew. J Plant Regist 4:1–5

    Article  Google Scholar 

  • Inglis D, Brown CR, Gundersen BG, Porter LD, Miller JS, Johnson DA, Lozoya-Saldafia H, Haynes KG (2007) Assessment of Solanum hougasii in Washington and Mexico as a source of resistance to late blight. Am J Potato Res 84:217–228

    Article  Google Scholar 

  • Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am J Bot 100:930–938

    Article  PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga M (1988) Use of wild germplasm for sweet potato breeding. In: Exploration, maintenance, and utilization of sweetpotato genetic resources. International Potato Center, Lima, pp 199–210

    Google Scholar 

  • Jan CC, Chandler JM (1988) Registration of powdery mildew resistant sunflower germplasm pool, PM 1. Crop Sci 28:1039–1040

    Google Scholar 

  • Jan CC, Fernandez-Martinez JM, Ruso J, Muñoz-Ruz J (2002) Registration of four sunflower germplasms with resistance to Orobanche cumana Race F. Crop Sci 42:2217–2218

    Article  Google Scholar 

  • Jan CC, Quresh Z, Gulya TJ (2004) Registration of seven rust resistant sunflower germplasms. Crop Sci 44:1887–1888

    Article  Google Scholar 

  • Jan CC, Miller JF, Seiler GJ, Fick GN (2006) Registration of one cytoplasmic male sterile and two fertility restoration sunflower genetic stocks. Crop Sci 46:1835–1835

    Article  Google Scholar 

  • Jansky S (2000) Breeding for disease resistance in potato. Plant Breed Rev 19:69–156

    Google Scholar 

  • Jansky SH, Dempewolf H, Camadro EL, Simon R, Zimnoch-Guzowska E, Bisognin DA, Bonierbale M (2013) A case for crop wild relative preservation and use in potato. Crop Sci 53:746–754

    Article  Google Scholar 

  • Jennings DL (1995) Cassava, Manihot esculenta (Euphorbiaceae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Group, Harlow, pp 128–132

    Google Scholar 

  • Jyoti J, Brewer GJ (1999) Resistance in sunflower and interaction with Bacillus thuringiensis for control of banded sunflower moth (Lepidoptera: Tortricidae). J Econ Entomol 92:1230–1233

    Article  CAS  PubMed  Google Scholar 

  • Kane NC, Rieseberg LH (2007) Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175:1823–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantar MB, Baute GJ, Bock DG, Rieseberg LH (2014) Genomic variation in Helianthus: learning from the past and looking to the future. Brief Funct Genomics 13:328–340

    Article  PubMed  Google Scholar 

  • Kantar, MB, Sosa, CC, Khoury, CK, Castañeda-Álvarez, NP, Achicanoy, HA, Bernau, V, Kane, NC, Marek, L, Seiler, G, Rieseberg, LH. (2015). Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Frontiers in plant science, 6, 841

    Google Scholar 

  • Kays SJ, Nottingham SF (2008) Biology and chemistry of Jerusalem artichoke Helianthus tuberosus L. CRC Press, Boca Raton, FL

    Google Scholar 

  • Khoury CK, Heider B, Castañeda-Álvarez NP, Achicanoy HA, Sosa CC, Miller RE, Scotland RW, Wood JR, Rossel G, Eserman LA, Jarret RL, Yencho GC, Bernau V, Henry Juarez H, Sotelo S, Stef de Haan S, Struik PC (2015) Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Front Plant Sci 6:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladio AH (2001) The maintenance of wild edible plant gathering in a Mapuche community of Patagonia. Econ Bot 55(2):243–254

    Article  Google Scholar 

  • Lebot V (2010) Sweet potato. In: Bradshaw JE (ed) Handbook of plant breeding, root and tuber crops. Springer, New York, pp 97–125

    Chapter  Google Scholar 

  • Lexer C, Welch ME, Durphy JL, Rieseberg LH (2003) Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol Ecol 12:1225–1235

    Article  CAS  PubMed  Google Scholar 

  • Lexer C, Lai Z, Rieseberg LH (2004) Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytol 161:225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim TK (2016) Pachyrhizus erosus. In: Edible medicinal and non-medicinal plants. Springer Netherlands, Dordrecht, pp 465–481

    Chapter  Google Scholar 

  • Liu Z, Halterman D (2009) Different genetic mechanisms control foliar and tuber resistance to Phytophthora infestans in wild potato Solanum verrucosum. Am J Potato Res 86(6):476

    Article  Google Scholar 

  • Ma XY, Zhang LH, Shao HB, Xu G, Zhang F, Ni FT, Brestic M (2011) Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant plant has high adaptability and multiple-use values. J Med Plant Res 5:1272–1279

    Google Scholar 

  • McDonald JA, Austin DF (1990) Changes and additions in Ipomoea section Batatas (Convolvulaceae). Brittonia 42(2):116–120

    Article  Google Scholar 

  • McGrath JM, Panella L, Frese L (2011) Beta. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 1–28

    Google Scholar 

  • Miller JF, Al-Khatib K (2002) Registration of imidazolinone herbicide-resistant sunflower maintainer (HA 425) and fertility restorer (RHA 426 and RHA 427) germplasms. Crop Sci 42:988–989

    Article  Google Scholar 

  • Miller JF, Gulya TJ (1988) Registration of six downy mildew resistant sunflower germplasm lines. Crop Sci 28:1040–1041

    Article  Google Scholar 

  • Miller JF, Gulya TJ (1999). Registration of eight Sclerotinia-tolerant sunflower germplasm lines. Crop sci, 39(1):301–302

    Google Scholar 

  • Miller JF, Seiler GJ (2003) Registration of five oilseed maintainer (HA 429–HA 433) sunflower germplasm lines. Crop Sci 43:2313–2314

    Article  Google Scholar 

  • Narina SS, Jasti M, Buyyarapu R, Bhattacharjee R (2011) Manihot. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 133–155

    Chapter  Google Scholar 

  • Nassar NM (1978) Conservation of the genetic resources of cassava (Manihot esculenta) determination of wild species localities with emphasis on probable origin. Econ Bot 32(3):311–320

    Article  Google Scholar 

  • Nassar NM, Hashimoto DYC, Fernandes SDC (2008) Wild Manihot species: botanical aspects, geographic distribution and economic value. Genet Mol Res 7(1):16–28

    Article  PubMed  Google Scholar 

  • NatureServe (2017) NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. Accessed 10 Aug 2017

  • Nimmakayala P, Vajja G, Reddy UK (2011) Ipomoea. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 123–132

    Chapter  Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591

    Article  CAS  PubMed  Google Scholar 

  • Onokpise OU, Wutoh JG, Ndzana X, Tambong JT, Meboka MM, Sama, AE, Nyochembeng L, Aguegia A, Nzietchueng S, Wilson JG, Burns M (1999) Evaluation of macabo cocoyam germplasm in Cameroon. Perspectives on new crops and new uses, 394–396

    Google Scholar 

  • Onwueme IC (2002) Cassava in Asia and the Pacific. In: Hillocks RJ, Thresh JM, Bellotti A (eds) Cassava: biology, production and utilization. CABI, Wallingford, pp 1–16

    Google Scholar 

  • Panella L, Lewellen R (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:383–400

    Article  CAS  Google Scholar 

  • Pío-León, JF, Delgado-Vargas, F, León-de la Luz, JL, Ortega-Rubio, A (2017). Prioritizing wild edible plants for potential new crops based on deciduous forest traditional knowledge by a rancher community. Bot Sci, 95(1):47–59

    Google Scholar 

  • Piperno DR, Holst I (1998) The presence of starch grains on prehistoric stone tools from the humid neotropics: indications of early tuber use and agriculture in Panama. J Archaeol Sci 25:765–776

    Article  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Hansell P (2000) Starch grains reveal early root crop horticulture in the Panamanian tropical forest. Nature 407:894–897

    Article  CAS  PubMed  Google Scholar 

  • Prescott-Allen R, Prescott Allen C (1986) The first resource: wild species in the North American economy. Yale University, New Haven

    Book  Google Scholar 

  • Qi LL, Seiler GJ, Vick BA, Gulya TJ (2012) Genetics and mapping of the R 11 gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L.). Theor Appl Genet 125:921–932

    Article  CAS  PubMed  Google Scholar 

  • Quero-Garcia, J., Ivancic, A., & Lebot, V. (2010). Taro and cocoyam. In Root and Tuber Crops (pp. 149–172). Springer, New York, NY

    Google Scholar 

  • Ramsay G, Bryan G (2011) Solanum. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 259–271

    Chapter  Google Scholar 

  • Reddy PP (2015) Yam Bean, Pachyrhizus erosus. In: Plant protection in tropical root and tuber crops. Springer, New Delhi, pp 267–279

    Chapter  Google Scholar 

  • Rogers CE, Thompson TE, Seiler GJ (1982) Sunflower species of the United States. National Sunflower Association, Bismarck, pp 1–75

    Google Scholar 

  • Rogers CE, Thompson TE, Seiler GJ (1984) Registration of three Helianthus germplasms for resistance to the sunflower moth. Crop Sci 24:212–213

    Article  Google Scholar 

  • Ross H (1979) Wild species and primitive cultivars as ancestors of potato varieties. In: Zeven AC, van Harten AM (eds) Proceedings of the conference broadening the genetic base of crops. Centre for Agricultural Publishing and Documentation, Wageningen, pp 237–245

    Google Scholar 

  • Sakamoto S (1976) Breeding of a new sweet potato variety, Minamiyutaka, by the use of wild relatives. Jpn Agric Res Quest 10:183–186

    Google Scholar 

  • Seiler GJ (1991a) Registration of 15 interspecific sunflower germplasm lines derived from wild annual species. Crop Sci 31:1389–1390

    Article  Google Scholar 

  • Seiler GJ (1991b) Registration of 13 downy mildew tolerant interspecific sunflower germplasm lines derived from wild annual species. Crop Sci 31:1714–1716

    Google Scholar 

  • Seiler GJ (1994) Progress report of the working group of the evaluation of wild Helianthus species for the period 1991 to 1993. Helia 17:87–92

    Google Scholar 

  • Seiler GJ (2000) Registration of 10 interspecific germplasms derived from wild perennial sunflower. Crop Sci 40:587–588

    Article  Google Scholar 

  • Seiler GJ, Campbell LG (2004) Genetic variability for mineral element concentrations of wild Jerusalem artichoke forage. Crop Sci 44(1):289–292

    Article  CAS  Google Scholar 

  • Seiler GJ, Campbell LG (2006) Genetic variability for mineral concentration in the forage of Jerusalem artichoke cultivars. Euphytica 150:281–288

    Article  CAS  Google Scholar 

  • Shiotani I, Huang ZZ, Sakamoto S, Miyazaki T (1991) The role of the wild Ipomoea trifida germplasm in sweet potato breeding. Symp Trop Root Crops Dev Econ 380:388–398

    Google Scholar 

  • Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–190

    Google Scholar 

  • Solis RS, Haas J, Creamer W (2001) Dating Caral, a preceramic site in the Supe Valley on the central coast of Peru. Science 292:723–726

    Article  CAS  PubMed  Google Scholar 

  • Spooner DM, Bamberg JB (1994) Potato genetic resources: sources of resistance and systematics. Am Potato J 71:325–337

    Article  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. PNAS 102:14694–14699

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Bhardwaj V, Singh BP, Khurana SP (2016) Potato diversity and its genetic enhancement. In: Gene pool diversity and crop improvement. Springer International Publishing, Cham, pp 187–226

    Chapter  Google Scholar 

  • Suszkiw J (2009) Scientists use old, new tools to develop pest-resistant potato. Agric Res 57:11–12

    Google Scholar 

  • Tambong JT, Ndzana JG, Wutoh JG, Dadson R (1997) Variability and germplasm loss in the Cameroon national collection of cocoyam (Xanthosoma sagittifolium Schott (L.)). Plant Genet Resour Newsl 112:49–54

    Google Scholar 

  • Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T (2008) Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet 116:691–700

    Article  CAS  PubMed  Google Scholar 

  • USDA, ARS, National Plant Germplasm System (2017) Germplasm Resources Information Network (GRIN Global) Database National Germplasm Resources Laboratory, Beltsville, MD. https://www.ars-grin.gov/npgs/acc/acc_queries.html. Accessed 18 Jan 2017

  • Velasco L, Pérez-Vich B, Yassein AA, Jan CC, Fernández-Martínez JM (2012) Inheritance of resistance to sunflower broomrape (Orobanche cumana Wallr.) in an interspecific cross between Helianthus annuus and Helianthus debilis subsp. tardiflorus. Plant Breed 131:220–221

    Article  Google Scholar 

  • Whelan EDP, Dedio W (1980) Registration of sunflower germplasm composite crosses CMG-1, CMG-2, and CMG-3. Crop Sci 20:832–832

    Article  Google Scholar 

  • Yang Y, Guan S, Zhai H, He S, Liu Q (2009) Development and evaluation of a storage root-bearing sweet potato somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L. Plant Cell Tissue Org Cult (PCTOC) 99(1):83–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Kantar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, J.E., Campbell, A., Kantar, M.B. (2019). Crop Wild Relatives of Root Vegetables in North America. In: Greene, S., Williams, K., Khoury, C., Kantar, M., Marek, L. (eds) North American Crop Wild Relatives, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-97121-6_8

Download citation

Publish with us

Policies and ethics