Skip to main content

Design of a Narrowband Single Photon Source

  • Chapter
  • First Online:
Narrowband Single Photons for Light-Matter Interfaces

Part of the book series: Springer Theses ((Springer Theses))

  • 429 Accesses

Abstract

Photons are the ideal carriers for quantum information: they travel at the speed of light, enabling the fastest communication possible, their interaction with the environment is weak, resulting in low decoherence, and they allow simple encoding of quantum information in multiple degrees of freedom, e.g. in polarisation or frequency. The development of optical fibres with losses \({<}0.15~\)dB/km at telecom wavelengths made communication distances \({\sim }100~\)km and most recently up to 300 km possible, fundamentally limited by chromatic and modal dispersion, scattering and absorption. This is insufficient for the implementation of large global networks and therefore the original information needs to be restored on a regular basis via so-called quantum repeaters. The repeater can either be a series of high fidelity gates (\({>}99\%\)) in an all optical approach, or the information is stored locally in a quantum memory, generally in some type of atomic transitions, purified, and then a new photon is emitted, carrying the initial information. To build such a network of quantum nodes, we have to achieve efficient interaction between atoms and single photons. This is not a trivial task because photons usually have bandwidths 5–6 orders of magnitude larger than the transitions they are aiming at. Cavity-enhanced SPDC can solve this problem while maintaining high rates of photon pair creation as discussed in Section. The upcoming sections will present the design considerations of the optical and the electronic control system in order to build a narrowband single photon source suitable for quantum memories based on the rubidium (Rb) D\(_1\) transition at 795 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  2. Takemoto, K., et al.: Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015)

    Article  ADS  Google Scholar 

  3. Agrell, E., et al.: Roadmap of optical communications. J. Opt. 18, 063002 (2016)

    Article  ADS  Google Scholar 

  4. Korzh, B., et al.: Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photonics 9, 163–168 (2015)

    Article  ADS  Google Scholar 

  5. Ten, S.: Ultra low-loss optical fiber technology. In: 2016 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3 (2016)

    Google Scholar 

  6. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  7. Chou, C.-W., et al.: Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007)

    Article  ADS  Google Scholar 

  8. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  9. Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)

    Article  ADS  Google Scholar 

  10. Tittel, W., et al.: Photon-echo quantum memory in solid state systems. Laser Photonics Rev. 4, 244–267 (2010)

    Article  ADS  Google Scholar 

  11. Yuan, Z.-S., et al.: Experimental demonstration of a bdcz quantum repeater node. Nature 454, 1098–1101 (2008)

    Article  ADS  Google Scholar 

  12. Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photonics 6, 777–781 (2012)

    Article  ADS  Google Scholar 

  13. Steck, D.A.: Rubidium 87 D line data (2015). http://steck.us/alkalidata/

  14. Chua, S.S.Y., et al.: Impact of backscattered light in a squeezing-enhanced interferometric gravitational-wave detector. Class. Quantum Gravity 31, 035017 (2014)

    Article  ADS  Google Scholar 

  15. Boyd, G.D., Kleinman, D.A.: Parametric interaction of focused gaussian light beams. J. Appl. Phys. 39, 3597–3639 (1968)

    Article  ADS  Google Scholar 

  16. Targat, R.L., Zondy, J.-J., Lemonde, P.: 75%-efficiency blue generation from an intracavity ppKTP frequency doubler. Opt. Commun. 247, 471–481 (2005)

    Article  ADS  Google Scholar 

  17. Scholz, M., Koch, L., Benson, O.: Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett. 102, 063603 (2009)

    Article  ADS  Google Scholar 

  18. Wolfgramm, F., de Icaza Astiz, Y.A., Beduini, F.A., Cerè, A., Mitchell, M.W.: Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett. 106, 053602 (2011)

    Article  ADS  Google Scholar 

  19. Zhou, Z.-Y., Ding, D.-S., Li, Y., Wang, F.-Y., Shi, B.-S.: Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration. J. Opt. Soc. Am. B 31, 128–134 (2014)

    Article  ADS  Google Scholar 

  20. Pomarico, E., Sanguinetti, B., Osorio, C.I., Herrmann, H., Thew, R.T.: Engineering integrated pure narrow-band photon sources. New J. Phys. 14, 033008 (2012)

    Article  ADS  Google Scholar 

  21. Fekete, J., Rieländer, D., Cristiani, M., de Riedmatten, H.: Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys. Rev. Lett. 110, 220502 (2013)

    Article  ADS  Google Scholar 

  22. Monteiro, F., Martin, A., Sanguinetti, B., Zbinden, H., Thew, R.T.: Narrowband photon pair source for quantum networks. Opt. Express 22, 4371–4378 (2014)

    Article  ADS  Google Scholar 

  23. Rambach, M., Nikolova, A., Weinhold, T.J., White, A.G.: Sub-megahertz linewidth single photon source. APL Photonics 1 (2016)

    Google Scholar 

  24. Steinlechner, J., et al.: Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm. Sensors 13, 565 (2013)

    Article  Google Scholar 

  25. Hosseini, M., Sparkes, B.M., Campbell, G., Lam, P.K., Buchler, B.C.: High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun. 2, 174 (2011)

    Article  ADS  Google Scholar 

  26. Hosseini, M., Campbell, G., Sparkes, B.M., Lam, P.K., Buchler, B.C.: Unconditional room-temperature quantum memory. Nat. Phys. 7, 794–798 (2011)

    Article  Google Scholar 

  27. Bowie, J., Boyce, J., Chiao, R.: Saturated-absorption spectroscopy of weak-field zeeman splittings in rubidium. J. Opt. Soc. Am. B 12, 1839–1842 (1995)

    Article  ADS  Google Scholar 

  28. Rieländer, D., Lenhard, A., Mazzera, M., de Riedmatten, H.: Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories. New J. Phys. 18, 123013 (2016)

    Article  ADS  Google Scholar 

  29. Chuu, C.-S., Harris, S.E.: Ultrabright backward-wave biphoton source. Phys. Rev. A 83, 061803 (2011)

    Article  ADS  Google Scholar 

  30. Ahlrichs, A., Benson, O.: Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect. Appl. Phys. Lett. 108, 021111 (2016)

    Article  ADS  Google Scholar 

  31. Luo, K.-H., et al.: Direct generation of genuine single-longitudinal-mode narrowband photon pairs. New J. Phys. 17, 073039 (2015)

    Article  ADS  Google Scholar 

  32. Cerè, A., et al.: Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor. Opt. Lett. 34, 1012–1014 (2009)

    Article  ADS  Google Scholar 

  33. Predojević, A., Mitchell, M.: Engineering the atom-photon interaction: controlling fundamental processes with photons, atoms and solids. In: Nano-Optics and Nanophotonics, 1st edn. Springer International Publishing (2016)

    Google Scholar 

  34. Maxfield, C.: FPGAs: Instant Access, 1st edn. Elsevier Science (2011)

    Google Scholar 

  35. Meyer-Baese, U.: Digital Signal Processing with Field Programmable Gate Arrays, 4th edn. Springer Publishing Company, Inc. (2014)

    Google Scholar 

  36. Kilts, S.: Advanced FPGA Design: Architecture, Implementation, and Optimization, 1st edn. Wiley-IEEE Press (2007)

    Google Scholar 

  37. Stavinov, E.: 100 Power Tips For FPGA Designers, 1st edn. CreateSpace, Paramount (2011)

    Google Scholar 

  38. Sparkes, B.M., et al.: A scalable, self-analyzing digital locking system for use on quantum optics experiments. Rev. Sci. Instr. 82 (2011)

    Google Scholar 

  39. Cho, J., Chong, S.: Stabilized max-min flow control using pid and pii2 controllers. In: Global Telecommunications Conference, 2004. GLOBECOM’04, vol. 3, pp. 1411–1417. IEEE (2004)

    Google Scholar 

  40. LFI-3751 with Autotune PID Thermoelectric Temperature Controller. Technical Report, Wavlength Electronics, Inc. (2003)

    Google Scholar 

  41. Demtröder, W.: Laser Spectroscopy: Basic Concepts and Instrumentation. Advanced Texts in Physics, 5th edn. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  42. Paschotta, R.: Field Guide to Lasers. Field Guide Series, Society of Photo Optical, 1st edn (2008)

    Google Scholar 

  43. User manual for CoSy 4.0. Technical Report, TEM Messtechnik GmbH (2006)

    Google Scholar 

  44. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: single-photon sources and detectors. Rev. Sci. Instr. 82, 071101 (2011)

    Article  ADS  Google Scholar 

  45. Horowitz, P., Hill, W.: The Art of Electronics, 2nd edn. Cambridge University Press, New York (1989)

    Google Scholar 

  46. Stefszky, M., Gmeiner, J.: ANU Photodetector V4. Technical Report, Australian National University, Canberra, ACT, Australia (2014)

    Google Scholar 

  47. Si PIN photodiodes. Technical Report, Hamamutsu Photonics K.K., Solid State Devision (2015)

    Google Scholar 

  48. Cova, S., Ghioni, M., Itzler, M.A., Bienfang, J.C., Restelli, A.: Chapter 4-semiconductor-based detectors. In: Alan Migdall, J.F., Sergey, V.P., Bienfang, J.C. (eds.) Single-Photon Generation and Detection. Experimental Methods in the Physical Sciences, vol. 45, pp. 83–146. Academic Press (2013)

    Google Scholar 

  49. Ghioni, M., Gulinatti, A., Rech, I., Zappa, F., Cova, S.: Progress in silicon single-photon avalanche diodes. IEEE J. Sel. Top. Quantum Electron. 13, 852–862 (2007)

    Article  ADS  Google Scholar 

  50. TTM8000-time tagging module with 8-channels. Technical Report, Roithner Lasertechnik GmbH (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rambach .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rambach, M. (2018). Design of a Narrowband Single Photon Source. In: Narrowband Single Photons for Light-Matter Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97154-4_3

Download citation

Publish with us

Policies and ethics