Skip to main content

Animal Models and Cardiac Extracellular Matrix Research

  • Chapter
  • First Online:
Cardiac Extracellular Matrix

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1098))

Abstract

Cardiovascular disease has been the leading cause of death worldwide for the last 15 years, accounting for 15 million deaths per year. While interventions are saving more lives, more than 20% of survivors will end up in heart failure. Cell-based and other types of therapy for advanced heart and vascular disease may offer new hope for those afflicted. Although a variety of cell types are under investigation, common issues include cell survival, retention, engraftment, and proliferation. Cardiac extracellular matrix (C-ECM) has compelling features that offer advantages to not only aid cell survival, retention, engraftment, and proliferation but likely has independent therapeutic (paracrine) and mechanical effects. Animal studies and clinical trials are underway to characterize the role of C-ECM and demonstrate efficacy for acute and chronic heart disease. This chapter reviews animal models used to enhance our knowledge of C-ECMs in heart disease and its use in the treatment of heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Creemers EE, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JP, Smits JF, Daemen MJ, Zile MR, Spinale FG. Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Phys Heart Circ Phys. 2003;284:H364–71.

    CAS  Google Scholar 

  2. Eskandari MK, Vijungco JD, Flores A, Borensztajn J, Shively V, WH P. Enhanced abdominal aortic aneurysm in TIMP-1-deficient mice. J Surg Res. 2005;123:289–93.

    Article  CAS  Google Scholar 

  3. Ikonomidis JS, Hendrick JW, Parkhurst AM, Herron AR, Escobar PG, Dowdy KB, Stroud RE, Hapke E, Zile MR, Spinale FG. Accelerated LV remodeling after myocardial infarction in TIMP-1-deficient mice: effects of exogenous MMP inhibition. Am J Phys Heart Circ Phys. 2005;288:H149–58.

    CAS  Google Scholar 

  4. Roten L, Nemoto S, Simsic J, Coker ML, Rao V, Baicu S, Defreyte G, Soloway PJ, Zile MR, Spinale FG. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol. 2000;32:109–20.

    Article  CAS  Google Scholar 

  5. Kandalam V, Basu R, Abraham T, Wang X, Soloway PD, Jaworski DM, Oudit GY, Kassiri Z. TIMP2 deficiency accelerates adverse post-myocardial infarction remodeling because of enhanced MT1-MMP activity despite lack of MMP2 activation. Circ Res. 2010;106:796–808.

    Article  CAS  Google Scholar 

  6. Kandalam V, Basu R, Moore L, Fan D, Wang X, Jaworski DM, Oudit GY, Kassiri Z. Lack of tissue inhibitor of metalloproteinases 2 leads to exacerbated left ventricular dysfunction and adverse extracellular matrix remodeling in response to biomechanical stress. Circulation. 2011;124:2094–105.

    Article  CAS  Google Scholar 

  7. Givvimani S, Kundu S, Narayanan N, Armaghan F, Qipshidze N, Pushpakumar S, Vacek TP, Tyagi SC. TIMP-2 mutant decreases MMP-2 activity and augments pressure overload induced LV dysfunction and heart failure. Arch Physiol Biochem. 2013;119:65–74.

    Article  CAS  Google Scholar 

  8. Ramani R, Nilles K, Gibson G, Burkhead B, Mathier M, McNamara D, McTiernan CF. Tissue inhibitor of metalloproteinase-2 gene delivery ameliorates postinfarction cardiac remodeling. Clin Transl Sci. 2011;4:24–31.

    Article  CAS  Google Scholar 

  9. Fedak PW, Smookler DS, Kassiri Z, Ohno N, Leco KJ, Verma S, Mickle DA, Watson KL, Hojilla CV, Cruz W, Weisel RD, Li RK, Khokha R. TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation. 2004;110:2401–9.

    Article  CAS  Google Scholar 

  10. Kandalam V, Basu R, Abraham T, Wang X, Awad A, Wang W, Lopaschuk GD, Maeda N, Oudit GY, Kassiri Z. Early activation of matrix metalloproteinases underlies the exacerbated systolic and diastolic dysfunction in mice lacking TIMP3 following myocardial infarction. Am J Phys Heart Circ Phys. 2010;299:H1012–23.

    CAS  Google Scholar 

  11. Kassiri Z, Defamie V, Hariri M, Oudit GY, Anthwal S, Dawood F, Liu P, Khokha R. Simultaneous transforming growth factor beta-tumor necrosis factor activation and cross-talk cause aberrant remodeling response and myocardial fibrosis in Timp3-deficient heart. J Biol Chem. 2009;284:29893–904.

    Article  CAS  Google Scholar 

  12. Kassiri Z, Oudit GY, Sanchez O, Dawood F, Mohammed FF, Nuttall RK, Edwards DR, Liu PP, Backx PH, Khokha R. Combination of tumor necrosis factor-alpha ablation and matrix metalloproteinase inhibition prevents heart failure after pressure overload in tissue inhibitor of metalloproteinase-3 knock-out mice. Circ Res. 2005;97:380–90.

    Article  CAS  Google Scholar 

  13. Tian H, Cimini M, Fedak PW, Altamentova S, Fazel S, Huang ML, Weisel RD, Li RK. TIMP-3 deficiency accelerates cardiac remodeling after myocardial infarction. J Mol Cell Cardiol. 2007;43:733–43.

    Article  CAS  Google Scholar 

  14. Takawale A, Zhang P, Azad A, Wang W, Wang X, Murray AG, Kassiri Z. Myocardial overexpression of TIMP3 after myocardial infarction exerts beneficial effects by promoting angiogenesis and suppressing early proteolysis. Am J Phys Heart Circ Phys. 2017;313:H224–36.

    Google Scholar 

  15. Koskivirta I, Kassiri Z, Rahkonen O, Kiviranta R, Oudit GY, McKee TD, Kyto V, Saraste A, Jokinen E, Liu PP, Vuorio E, Khokha R. Mice with tissue inhibitor of metalloproteinases 4 (Timp4) deletion succumb to induced myocardial infarction but not to cardiac pressure overload. J Biol Chem. 2010;285:24487–93.

    Article  CAS  Google Scholar 

  16. Yarbrough WM, Baicu C, Mukherjee R, Van Laer A, Rivers WT, McKinney RA, Prescott CB, Stroud RE, Freels PD, Zellars KN, Zile MR, Spinale FG. Cardiac-restricted overexpression or deletion of tissue inhibitor of matrix metalloproteinase-4: differential effects on left ventricular structure and function following pressure overload-induced hypertrophy. Am J Phys Heart Circ Phys. 2014;307:H752–61.

    CAS  Google Scholar 

  17. Zavadzkas JA, Stroud RE, Bouges S, Mukherjee R, Jones JR, Patel RK, McDermott PJ, Spinale FG. Targeted overexpression of tissue inhibitor of matrix metalloproteinase-4 modifies post-myocardial infarction remodeling in mice. Circ Res. 2014;114:1435–45.

    Article  CAS  Google Scholar 

  18. Ramirez FD, Motazedian P, Jung RG, Di Santo P, MacDonald ZD, Moreland R, Simard T, Clancy AA, Russo JJ, Welch VA, Wells GA, Hibbert B. Methodological rigor in preclinical cardiovascular studies: targets to enhance reproducibility and promote research translation. Circ Res. 2017;120:1916–26.

    Article  CAS  Google Scholar 

  19. Borst O, Ochmann C, Schonberger T, Jacoby C, Stellos K, Seizer P, Flogel U, Lang F, Gawaz M. Methods employed for induction and analysis of experimental myocardial infarction in mice. Cellular physiology and biochemistry : international journal of experimental cellular physiology. Biochem Pharmacol. 2011;28:1–12.

    CAS  Google Scholar 

  20. Goldman S, Raya TE. Rat infarct model of myocardial infarction and heart failure. J Card Fail. 1995;1:169–77.

    Article  CAS  Google Scholar 

  21. Camacho P, Fan H, Liu Z, He JQ. Small mammalian animal models of heart disease. Am J Cardiovasc Dis. 2016;6:70–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Barnes J, Pat B, Chen YW, Powell PC, Bradley WE, Zheng J, Karki A, Cui X, Guichard J, Wei CC, Collawn J, Dell'Italia LJ. Whole-genome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy. Ther Adv Cardiovasc Dis. 2014;8:97–118.

    Article  CAS  Google Scholar 

  23. Tarnavski O. Mouse surgical models in cardiovascular research. Methods Mol Biol. 2009;573:115–37.

    Article  Google Scholar 

  24. Hamrell BB, Hultgren PB. Reduced isotonic sarcomere shortening in rabbit right ventricular pressure overload hypertrophy. J Mol Cell Cardiol. 1992;24:133–47.

    Article  CAS  Google Scholar 

  25. Kapur NK, Paruchuri V, Aronovitz MJ, Qiao X, Mackey EE, Daly GH, Ughreja K, Levine J, Blanton R, Hill NS, Karas RH. Biventricular remodeling in murine models of right ventricular pressure overload. PLoS One. 2013;8:e70802.

    Article  CAS  Google Scholar 

  26. Rain S, Andersen S, Najafi A, Gammelgaard Schultz J, da Silva Goncalves Bos D, Handoko ML, Bogaard HJ, Vonk-Noordegraaf A, Andersen A, van der Velden J, Ottenheijm CA, de Man FS. Right ventricular myocardial stiffness in experimental pulmonary arterial hypertension: relative contribution of fibrosis and myofibril stiffness. Circ Heart Fail. 2016;9:1–9.

    Google Scholar 

  27. Reddy S, Zhao M, Hu DQ, Fajardo G, Katznelson E, Punn R, Spin JM, Chan FP, Bernstein D. Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am J Phys Heart Circ Phys. 2013;304:H1314–27.

    CAS  Google Scholar 

  28. Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol. 2011;2011:729497.

    Article  Google Scholar 

  29. Karram T, Hoffman A, Bishara B, Brodsky S, Golomb E, Winaver J, Abassi Z. Induction of cardiac hypertrophy by a controlled reproducible sutureless aortocaval shunt in the mouse. J Invest Surg. 2005;18:325–34.

    Article  Google Scholar 

  30. Miyamoto T, Takeishi Y, Shishido T, Takahashi H, Itoh M, Kubota I, Tomoike H. Role of nitric oxide in the progression of cardiovascular remodeling induced by carotid arterio-venous shunt in rabbits. Jpn Heart J. 2003;44:127–37.

    Article  CAS  Google Scholar 

  31. Borer JS, Truter S, Herrold EM, Falcone DJ, Pena M, Carter JN, Dumlao TF, Lee JA, Supino PG. Myocardial fibrosis in chronic aortic regurgitation: molecular and cellular responses to volume overload. Circulation. 2002;105:1837–42.

    Article  CAS  Google Scholar 

  32. Corno AF, Cai X, Jones CB, Mondani G, Boyett MR, Jarvis JC, Hart G. Congestive heart failure: experimental model. Front Pediatr. 2013;1:33.

    PubMed  PubMed Central  Google Scholar 

  33. Nogueira-Ferreira R, Vitorino R, Ferreira R, Henriques-Coelho T. Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: a network approach. Pulm Pharmacol Ther. 2015;35:8–16.

    Article  CAS  Google Scholar 

  34. Bai P, Mabley JG, Liaudet L, Virag L, Szabo C, Pacher P. Matrix metalloproteinase activation is an early event in doxorubicin-induced cardiotoxicity. Oncol Rep. 2004;11:505–8.

    CAS  PubMed  Google Scholar 

  35. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev. 2014;34:106–35.

    Article  CAS  Google Scholar 

  36. Hayward R, Hydock DS. Doxorubicin cardiotoxicity in the rat: an in vivo characterization. J Am Assoc Lab Anim Sci .: JAALAS. 2007;46:20–32.

    CAS  PubMed  Google Scholar 

  37. Wang JJ, Rau C, Avetisyan R, Ren S, Romay MC, Stolin G, Gong KW, Wang Y, Lusis AJ. Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genet. 2016;12:e1006038.

    Article  Google Scholar 

  38. Carll AP, Willis MS, Lust RM, Costa DL, Farraj AK. Merits of non-invasive rat models of left ventricular heart failure. Cardiovasc Toxicol. 2011;11:91–112.

    Article  Google Scholar 

  39. Wang Z, Schreier DA, Hacker TA, Chesler NC. Progressive right ventricular functional and structural changes in a mouse model of pulmonary arterial hypertension. Physiol Rep. 2013;1:e00184.

    Article  Google Scholar 

  40. Liu A, Philip J, Vinnakota KC, Van den Bergh F, Tabima DM, Hacker T, Beard DA, Chesler NC. Estrogen maintains mitochondrial content and function in the right ventricle of rats with pulmonary hypertension. Physiol Rep. 2017;5:e13157.

    Article  Google Scholar 

  41. Horn MA, Trafford AW. Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J Mol Cell Cardiol. 2016;93:175–85.

    Article  CAS  Google Scholar 

  42. Hacker TA, McKiernan SH, Douglas PS, Wanagat J, Aiken JM. Age-related changes in cardiac structure and function in Fischer 344 x Brown Norway hybrid rats. Am J Phys Heart Circ Phys. 2006;290:H304–11.

    CAS  Google Scholar 

  43. Shiomi T, Tsutsui H, Ikeuchi M, Matsusaka H, Hayashidani S, Suematsu N, Wen J, Kubota T, Takeshita A. Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction. J Am Coll Cardiol. 2003;42:165–72.

    Article  CAS  Google Scholar 

  44. Ouwens DM, Boer C, Fodor M, de Galan P, Heine RJ, Maassen JA, Diamant M. Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia. 2005;48:1229–37.

    Article  CAS  Google Scholar 

  45. van Dokkum RP, Eijkelkamp WB, Kluppel AC, Henning RH, van Goor H, Citgez M, Windt WA, van Veldhuisen DJ, de Graeff PA, de Zeeuw D. Myocardial infarction enhances progressive renal damage in an experimental model for cardio-renal interaction. J Am Soc Nephrol. 2004;15:3103–10.

    Article  Google Scholar 

  46. Lu D, Wang K, Wang S, Zhang B, Liu Q, Zhang Q, Geng J, Shan Q. Beneficial effects of renal denervation on cardiac angiogenesis in rats with prolonged pressure overload. Acta Physiol. 2017;220:47–57.

    Article  CAS  Google Scholar 

  47. Windt WA, Henning RH, Kluppel AC, Xu Y, de Zeeuw D, van Dokkum RP. Myocardial infarction does not further impair renal damage in 5/6 nephrectomized rats. Nephrol Dial Transplant. 2008;23:3103–10.

    Article  Google Scholar 

  48. Gavras H, Brunner HR, Laragh JH, Vaughan ED Jr, Koss M, Cote LJ, Gavras I. Malignant hypertension resulting from deoxycorticosterone acetate and salt excess: role of renin and sodium in vascular changes. Circ Res. 1975;36:300–9.

    Article  CAS  Google Scholar 

  49. O'Brien D, Chunduri P, Iyer A, Brown L. L-carnitine attenuates cardiac remodelling rather than vascular remodelling in deoxycorticosterone acetate-salt hypertensive rats. Basic Clin Pharmacol Toxicol. 2010;106:296–301.

    Article  CAS  Google Scholar 

  50. Dixon JA, Spinale FG. Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail. 2009;2:262–71.

    Article  Google Scholar 

  51. Dubi S, Arbel Y. Large animal models for diastolic dysfunction and diastolic heart failure-a review of the literature. Cardiovasc Pathol. 2010;19:147–52.

    Article  Google Scholar 

  52. Power JM, Tonkin AM. Large animal models of heart failure. Aust NZ J Med. 1999;29:395–402.

    Article  CAS  Google Scholar 

  53. Yarbrough WM, Spinale FG. Large animal models of congestive heart failure: a critical step in translating basic observations into clinical applications. J Nucl Cardiol. 2003;10:77–86.

    Article  Google Scholar 

  54. Recchia FA, Lionetti V. Animal models of dilated cardiomyopathy for translational research. Vet Res Commun. 2007;31(Suppl 1):35–41.

    Article  Google Scholar 

  55. Jugdutt BI. The dog model of left ventricular remodeling after myocardial infarction. J Card Fail. 2002;8:S472–5.

    Article  Google Scholar 

  56. Wayman NS, McDonald MC, Chatterjee PK, Thiemermann C. Models of coronary artery occlusion and reperfusion for the discovery of novel antiischemic and antiinflammatory drugs for the heart. Methods Mol Biol. 2003;225:199–208.

    CAS  PubMed  Google Scholar 

  57. Schmuck EG, Koch JM, Hacker TA, Hatt CR, Tomkowiak MT, Vigen KK, Hendren N, Leitzke C, Zhao YQ, Li Z, Centanni JM, Hei DJ, Schwahn D, Kim J, Hematti P, Raval AN. Intravenous Followed by X-ray Fused with MRI-Guided Transendocardial Mesenchymal Stem Cell Injection Improves Contractility Reserve in a Swine Model of Myocardial Infarction. J Cardiovasc Transl Res. 2015;8:438–48.

    Article  Google Scholar 

  58. van der Spoel TI, Jansen of Lorkeers SJ, Agostoni P, van Belle E, Gyongyosi M, Sluijter JP, Cramer MJ, Doevendans PA, Chamuleau SA. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res. 2011;91:649–58.

    Article  Google Scholar 

  59. Harper J, Harper E, Covell JW. Collagen characterization in volume-overload- and pressure-overload-induced cardiac hypertrophy in minipigs. Am J Phys. 1993;265:H434–8.

    CAS  Google Scholar 

  60. Wittnich C, Belanger MP, Oh BS, Salerno TA. Surgical model of volume overload-induced ventricular myocardial hypertrophy (VHvo) to study a clinical problem in humans. J Invest Surg. 1991;4:333–8.

    Article  CAS  Google Scholar 

  61. Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H, Hadri L, Yoneyama R, Hoshino K, Takewa Y, Sakata S, Peluso R, Zsebo K, Gwathmey JK, Tardif JC, Tanguay JF, Hajjar RJ. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol. 2008;51:1112–9.

    Article  CAS  Google Scholar 

  62. Hyldebrandt JA, Siven E, Agger P, Frederiksen CA, Heiberg J, Wemmelund KB, Ravn HB. Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in an animal model with right ventricular failure after pulmonary artery banding. Am J Phys Heart Circ Phys. 2015;309:H206–12.

    CAS  Google Scholar 

  63. Lambert V, Capderou A, Le Bret E, Rucker-Martin C, Deroubaix E, Gouadon E, Raymond N, Stos B, Serraf A, Renaud JF. Right ventricular failure secondary to chronic overload in congenital heart disease: an experimental model for therapeutic innovation. J Thorac Cardiovasc Surg. 2010;139:1197–1204, 1204 e1191.

    Article  Google Scholar 

  64. Mazumder R, Schroeder S, Mo X, Clymer BD, White RD, Kolipaka A. In vivo quantification of myocardial stiffness in hypertensive porcine hearts using MR elastography. J Magn Reson Imaging. 2017;45:813–20.

    Article  Google Scholar 

  65. Feld Y, Dubi S, Reisner Y, Schwammenthal E, Shofti R, Pinhasi A, Carasso S, Elami A. Energy transfer from systole to diastole: a novel device-based approach for the treatment of diastolic heart failure. Acute Card Care. 2011;13:232–42.

    Article  Google Scholar 

  66. Li Y, Fuchimoto D, Sudo M, Haruta H, Lin QF, Takayama T, Morita S, Nochi T, Suzuki S, Sembon S, Nakai M, Kojima M, Iwamoto M, Hashimoto M, Yoda S, Kunimoto S, Hiro T, Matsumoto T, Mitsumata M, Sugitani M, Saito S, Hirayama A, Onishi A. Development of Human-Like Advanced Coronary Plaques in Low-Density Lipoprotein Receptor Knockout Pigs and Justification for Statin Treatment Before Formation of Atherosclerotic Plaques. J Am Heart Assoc. 2016;5:e002779.

    PubMed  PubMed Central  Google Scholar 

  67. Wei J, Ouyang H, Wang Y, Pang D, Cong NX, Wang T, Leng B, Li D, Li X, Wu R, Ding Y, Gao F, Deng Y, Liu B, Li Z, Lai L, Feng H, Liu G, Deng X. Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII. FEBS J. 2012;279:91–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Hacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hacker, T.A. (2018). Animal Models and Cardiac Extracellular Matrix Research. In: Schmuck, E., Hematti, P., Raval, A. (eds) Cardiac Extracellular Matrix. Advances in Experimental Medicine and Biology, vol 1098. Springer, Cham. https://doi.org/10.1007/978-3-319-97421-7_3

Download citation

Publish with us

Policies and ethics