Skip to main content

The ATLAS Experiment

  • Chapter
  • First Online:
Searches for Dijet Resonances

Part of the book series: Springer Theses ((Springer Theses))

  • 186 Accesses

Abstract

In order to search beyond the Standard Model of particle physics, and to study the Standard Model itself, a particle detector is needed. The ATLAS (A Toroidal LHC ApparatuS) detector is a large general-purpose particle detector which records the proton-proton collisions produced by the Large Hadron Collider (LHC). The analyses presented in this thesis utilise data which is recorded by the ATLAS detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ATLAS Collaboration (2008) The ATLAS experiment at the CERN large hadron collider. J Instrum 3.08:S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

  2. Brüning OS et al (2004) LHC design report. CERN yellow reports: monographs. CERN, Geneva. https://cds.cern.ch/record/782076

  3. Mobs E (2016) The CERN accelerator complex. Complexe des accélérateurs du CERN, General Photo. https://cds.cern.ch/record/2197559

  4. Herr W, Muratori B (2006) Concept of luminosity. https://cds.cern.ch/record/941318

  5. ATLAS Collaboration (2016) Performance of pile-up mitigation techniques for jets in pp collisions at \(\sqrt{s} = 8\,TeV\) using the ATLAS detector. Eur Phys J C76.11:5811. https://doi.org/10.1140/epjc/s10052-016-4395-z, arXiv:1510.03823 [hep-ex]

  6. ATLAS Collaboration, Meloni F (2016) Primary vertex reconstruction with the ATLAS detector. Technical report, ATL-PHYS-PROC-2016-163. Geneva: CERN

    Google Scholar 

  7. Eshraqi M, Trahern G (eds) (2016) LHC Run 2: results and challenges. In: Proceedings of 57th ICFA advanced beam dynamics workshop on high-intensity, High brightness and high power hadron beams (HB2016). Geneva, JACoW. http://accelconf.web.cern.ch/AccelConf/hb2016/papers/proceed.pdf, ISBN: 9783954501854

  8. ATLAS Collaboration (2017) Luminosity public results Run 2. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

  9. ATLAS Collaboration (2016) Data preparation public plots. https://atlas.web.cern.ch/Atlas/GROUPS/DATAPREPARATION/PublicPlots/2016/DataSummary/figs/intlumivsyear.eps

  10. Buckingham RM et al (2011) Metadata aided run selection at ATLAS. J Phys Conf Ser 331.4:042030. https://doi.org/10.1088/1742-6596/331/4/042030

  11. Dankers RJ (1997) The physics performance of and level 2 trigger for the inner detector of ATLAS (particle Detector, Muon Tracking, Cern). INSPIRE-888264. Ph.D. thesis. Twente U., Enschede, 1998

    Google Scholar 

  12. Pequenao J (2008) Computer generated image of the whole ATLAS detector. https://cds.cern.ch/record/1095924

  13. Hartmann F (2012) Silicon tracking detectors in high-energy physics. Nucl Instrum Meth A666:25–46. https://doi.org/10.1016/j.nima.2011.11.005

    Article  ADS  Google Scholar 

  14. Mindur B ((2016) ATLAS Transition Radiation Tracker (TRT): straw tubes for tracking and particle identification at the large hadron collider. Technical report, ATL-INDET-PROC-2016-001. Geneva: CERN

    Google Scholar 

  15. Potamianos K (2015) The upgraded pixel detector and the commissioning of the inner detector tracking of the ATLAS experiment for Run-2 at the large hadron collider. In: Proceedings, 2015 European physical society conference on high energy physics (EPS-HEP 2015), Vienna, Austria, 22–29 July 2015. p 261. arXiv:1608.07850 [physics.ins-det]

  16. Capeans M et al (2010) ATLAS insertable B-layer technical design report. Technical report CERN-LHCC-2010-013. ATLAS-TDR-19

    Google Scholar 

  17. Butti P (2014) Advanced alignment of the ATLAS tracking system. Technical report, ATL-PHYSPROC- 2014-231. Geneva: CERN

    Google Scholar 

  18. ATLAS Collaboration, Hines E (2011) Performance of particle identification with the ATLAS transition radiation tracker. In: Particles and fields. Proceedings, meeting of the division of the American physical society, DPF 2011, Providence, USA, 9–13 Aug 2011. arXiv:1109.5925 [physics.ins-det]

  19. Wigmans R (2008) Calorimetry. Sci Acta 2.1: 18. http://siba.unipv.it/fisica/ScientificaActa/volume_2_1/Wigmans.pdf

  20. Particle Data Group, Patrignani C et al (2016) Review of particle physics. Chin Phys C40.10. https://doi.org/10.1088/1674-1137/40/10/100001

  21. Fabjan CW, Gianotti F (2003) Calorimetry for particle physics. Rev Mod Phys 75:1243–1286. https://doi.org/10.1103/RevModPhys.75.1243

    Article  ADS  Google Scholar 

  22. Grahn K-J (2009) A layer correlation technique for pion energy calibration at the 2004 ATLAS combined beam test. pp 751–757. https://doi.org/10.1109/NSSMIC.2009.5402211, arXiv:0911.2639 [physics.ins-det]

  23. Pequenao J (2008) Computer generated image of the ATLAS calorimeter. https://cds.cern.ch/record/1095927

  24. ATLAS Collaboration, Meng Z (2010) Performance of the ATLAS liquid argon calorimeter. In: Physics at the LHC2010. Proceedings, 5th Conference, PLHC2010, Hamburg, Germany, 7–12 June 2010. DESY-PROC-2010-01. pp 406–408

    Google Scholar 

  25. ATLAS Collaboration, Nikiforou N (2013) Performance of the ATLAS liquid argon calorimeter after three years of LHC operation and plans for a future upgrade. https://doi.org/10.1109/ANIMMA.2013.6728060. arXiv:1306.6756 [physics.ins-det]

  26. Hance M (2012) Photon physics at the LHC: a measurement of inclusive isolated prompt photon production at \(\sqrt{s} = 7\) TeV with the ATLAS detector. Springer Theses. Springer, Berlin. http://www.springer.com/gp/book/9783642330612, ISBN: 9783642330629

  27. Mdhluli JE, Mellado B, Sideras-Haddad E (2017) Neutron irradiation and damage assessment of plastic scintillators of the Tile Calorimeter. J Phys: Conf Ser 802(1):012008. https://doi.org/10.1088/1742-6596/802/1/012008

    Article  Google Scholar 

  28. Carrió F et al (2014) The sROD module for the ATLAS tile calorimeter Phase-II upgrade demonstrator. J Instrum 9(02):C02019. https://doi.org/10.1088/1748-0221/9/02/C02019

    Article  Google Scholar 

  29. Sotto-Maior Peralva B (2013) Calibration and performance of the ATLAS tile calorimeter. In: Proceedings, international school on high energy physics: workshop on high energy physics in the near future. (LISHEP 2013), Rio de Janeiro, Brazil, 17–24 Mar 2013. arXiv:1305.0550 [physics.ins-det]

  30. Artamonov A et al (2008) The ATLAS forward calorimeter. J Instrum 3(02):P02010. https://doi.org/10.1088/1748-0221/3/02/P02010

    Article  Google Scholar 

  31. Aleksa M et al (2006) ATLAS combined testbeam: computation and validation of the electronic calibration constants for the electromagnetic calorimeter. Technical report, ATLLARG- PUB-2006-003. Geneva: CERN

    Google Scholar 

  32. ATLAS Collaboration (2014) Calorimeter calibration. https://twiki.cern.ch/twiki/bin/view/AtlasComputing/CalorimeterCalibration

  33. Pequenao J (2008) Computer generated image of the ATLAS Muons subsystem. https://cds.cern.ch/record/1095929

  34. ATLAS Muon Group (1994) Monitored drift tubes chambers for Muon spectroscopy in ATLAS. Technical report, ATL-MUON-94-044. ATL-M-PN-44. Geneva: CERN

    Google Scholar 

  35. Primor D et al (2007) A novel approach to track finding in a drift tube chamber. J Instrum 2(01):P01009. https://doi.org/10.1088/1748-0221/2/01/P01009

    Article  Google Scholar 

  36. Argyropoulos T et al (2008) Cathode strip chambers in ATLAS: installation, commissioning and in situ performance. https://doi.org/10.1109/NSSMIC.2008.4774958

  37. Cattani G, The RPC group (2011) The resistive plate chambers of the ATLAS experiment: performance studies. J Phys: Conf Ser 280(1):012001. https://doi.org/10.1088/1742-6596/280/1/012001

  38. Nagai K (1996) Thin gap chambers in ATLAS. Nucl Instrum Meth A384:219–221. https://doi.org/10.1016/S0168-9002(96)01065-0

    Article  ADS  Google Scholar 

  39. Majewski S et al (1983) A thin multiwire chamber operating in the high multiplication mode. Nucl Instrum Meth 217:265–271. https://doi.org/10.1016/0167-5087(83)90146-1

    Article  Google Scholar 

  40. ATLAS Collaboration (2017) Performance of the ATLAS trigger system in 2015. Eur Phys J C77.5:317. https://doi.org/10.1140/epjc/s10052-017-4852-3, arXiv:1611.09661 [hep-ex]

  41. Lampl W et al (2008) Calorimeter clustering algorithms: description and performance. Technical report, ATL-LARG-PUB-2008-002. Geneva: CERN

    Google Scholar 

  42. Bartsch V (2012) Experience with the custom-developed ATLAS offline trigger monitoring framework and reprocessing infrastructure. ATL-DAQ-PROC-2012-040

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Audrey Beresford .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beresford, L.A. (2018). The ATLAS Experiment. In: Searches for Dijet Resonances. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97520-7_3

Download citation

Publish with us

Policies and ethics