Skip to main content

ZigZag Phosphorene Nanoribbons Antidot—Electronic Structure and Device Application

  • Conference paper
  • First Online:
The Physics of Semiconductor Devices (IWPSD 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Included in the following conference series:

  • 3014 Accesses

Abstract

In this work, we explored the effect of antidots in phosphorene nanoribbons (PNRs) on nanoscale devices. Similar to graphene, the performance of PNRs transistor can be improved with antidots. In present work, we extensively studied the electronic and transport properties of Zigzag-PNRs antidot lattice. Transport simulation results show that the Negative Differential Resistance (NDR) region appearing for antidot device with higher current than that of ZPNRs devices without antidot. This makes the possibility to design device with enhanced transport properties to yield higher on current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  2. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  3. M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  4. S. Bagheri, N. Mansouri, E. Aghaie, Phophorene: a new competitor for graphene. Int. J. Hydrogen Energy 41, 4085–4405 (2016)

    Article  Google Scholar 

  5. V. Sorkin, H. Pan, H. Shi, S.Y. Quek, Y.W. Zhang, Nanoscale transition metal dichalcogenides: structures, properties, and applications. Crit. Rev. Solid State Mater. Sci. 39, 319–367 (2014)

    Article  ADS  Google Scholar 

  6. H. Du, X. Lin, Z. Xu, D. Chu, Recent developments in black phosphorous transistors. J. Mater. Chem. C 3, 8760–8775 (2015)

    Article  Google Scholar 

  7. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)

    Article  ADS  Google Scholar 

  8. W. Zhu, M.N. Yogeesh, S. Yang, S.H. Aldave, J.-S. Kim, S. Sonde, L. Tao, N. Lu, D. Akinwande, Flexible black phosphorus ambipolar transistors, circuits and am demodulator. Nano Lett. 15(3), 1883–1890 (2015)

    Article  ADS  Google Scholar 

  9. X. Han, H.M. Stewart, S.A. Shevlin, C.R.A. Catlow, Z.X. Gup, Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett. 14(8), 4607–4614 (2014)

    Article  ADS  Google Scholar 

  10. Q. Wu, L. Shen, M. Yang, Z. Huang, Y.P. Feng, Electronic and transport properties of phosphorene nanoribbons. Phys Rev. B 90, 0354436 (2015)

    Google Scholar 

  11. L. Rosales, M. Pacheo, Z. Barticevic, A. Leon, A. Latge, P.A. Orellana, Transport properties of antidot superlattices of graphene nanoribbons. Phys. Rev. B 80, 073402 (2009)

    Article  ADS  Google Scholar 

  12. A. Pechia, A. Di Carlo, Atomistic theory of transport in organic and inorganic structures. Rep. Prog. Phys. 67(18), 1497 (2014)

    ADS  Google Scholar 

  13. M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density functional method for non-equilibrium electron transport. Phys. Rev. B 65(16), 165401 (2002)

    Article  ADS  Google Scholar 

  14. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  15. C. Zhang, G. Xiang, M. Lan, Z. Tang, L. Deng, X. Zhang, Homostructured negative differential resistance device based on Zigzag phosphorene nanoribbons. RSC Adv. 5, 40358 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in parts by DST Fast track scheme for Young Scientists (SERB/F/6663/2015-16) and DST Extra Mural funding scheme(SERB/F/4240/2016-17). Authors would like to thank SERB and SASTRA University for their support.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkaprava Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santhia Carmel, Pon, A., Ramesh, R., Bhattacharyya, A. (2019). ZigZag Phosphorene Nanoribbons Antidot—Electronic Structure and Device Application. In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_2

Download citation

Publish with us

Policies and ethics