Skip to main content

Nonlinear Filtering and Information Geometry: A Hilbert Manifold Approach

  • Conference paper
  • First Online:
Information Geometry and Its Applications (IGAIA IV 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 252))

Included in the following conference series:

Abstract

Nonlinear filtering is a branch of Bayesian estimation, in which a “signal” process is progressively estimated from the history of a related “observations” process. Nonlinear filters are typically represented in terms of stochastic differential equations for the posterior distribution of the signal. The natural “state space” for a filter is a sufficiently rich family of probability measures having a suitable topology, and the manifolds of infinite-dimensional Information Geometry are obvious candidates. After some discussion of these, the paper goes on to summarise recent results that “lift” the equations of nonlinear filtering to a Hilbert manifold, M. Apart from providing a starting point for the development of approximations, this gives insight into the information-theoretic properties of filters, which are related to their quadratic variation in the Fisher–Rao metric. A new result is proved on the regularity of a multi-objective measure of approximation errors on M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)

    Google Scholar 

  2. Bucy, R.S., Joseph, P.D.: Filtering for Stochastic Processes with Applications to Guidance, vol. 326, 2nd edn. AMS Chelsea Publishing, Providence (1987)

    Google Scholar 

  3. Crisan, D., Rozovskiĭ, B.: The Oxford Handbook of Nonlinear Filtering. Oxford University Press, Oxford (2011)

    Google Scholar 

  4. Liptser, R.S., Shiryayev, A.N.: Statistics of Random Processes I—General Theory. Springer, New York (2001)

    Google Scholar 

  5. Amari, S.-I., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society, Providence (2000)

    Google Scholar 

  6. Cena, A., Pistone, G.: Exponential statistical manifold. Ann. Inst. Stat. Math. 59, 27–56 (2007)

    Article  MathSciNet  Google Scholar 

  7. Gibilisco, P., Pistone, G.: Connections on non-parametric statistical manifolds by Orlicz space geometry. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 325–347 (1998)

    Article  MathSciNet  Google Scholar 

  8. Pistone, G., Rogantin, M.P.: The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli 5, 721–760 (1999)

    Article  MathSciNet  Google Scholar 

  9. Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Stat. 23, 1543–1561 (1995)

    Article  MathSciNet  Google Scholar 

  10. Newton, N.J.: An infinite dimensional statistical manifold modelled on Hilbert space. J. Funct. Anal. 263, 1661–1681 (2012)

    Article  MathSciNet  Google Scholar 

  11. Newton, N.J.: Infinite dimensional statistical manifolds based on a balanced chart. Bernoulli 22, 711–731 (2016)

    Article  MathSciNet  Google Scholar 

  12. Newton, N.J.: Information geometric nonlinear filtering. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18, 1550014 (2015). https://doi.org/10.1142/S0219025715500149

    Article  MathSciNet  MATH  Google Scholar 

  13. Chentsov, N.N.: Statistical Decision Rules and Optimal Inference, Translations of Mathematical Monographs, vol. 53. American Mathematical Society, Providence (1982)

    Google Scholar 

  14. Shiryayev, A.N.: Stochastic equations of nonlinear filtering of jump Markov processes. Problemy Peredachi Informatsii II 3, 3–22 (1966)

    Google Scholar 

  15. Wonham, W.M.: Some applications of stochastic differential equations to optimal nonlinear filtering. SIAM J. Control 2, 347–369 (1965)

    MathSciNet  MATH  Google Scholar 

  16. Benes̆, V.E.: Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5, 65–92 (1981)

    Article  MathSciNet  Google Scholar 

  17. Brigo, D., Pistone, G.: Dimensionality reduction for measure valued evolution equations in statistical manifolds. In: Nielsen, F., Critchley, F., Dodson, C.T.J. (eds.) Computational Information Geometry for Image and Signal Processing, pp. 217–265. Springer, Berlin (2017)

    Google Scholar 

  18. Brigo, D., Hanzon, B., Le Gland, F.: Approximate nonlinear filtering on exponential manifolds of densities. Bernoulli 5, 495–534 (1999)

    Article  MathSciNet  Google Scholar 

  19. Naudts, J.: Generalised Thermostatistics. Springer, New York (2011)

    Book  Google Scholar 

  20. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  21. Bruveris, M., Michor, P.W.: Geometry of the Fisher-Rao metric on the space of smooth densities on a compact manifold (2016). arXiv:1607.04450

  22. Lods, B., Pistone, G.: Information geometry formalism for the spatially homogeneous Boltzmann equation. Entropy 17, 4323–4363 (2015)

    Article  MathSciNet  Google Scholar 

  23. Newton, N.J.: Manifolds of differentiable densities (2016). arXiv:1608.03979

  24. Lebowitz, J.J., Spohn, H.: A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–366 (1999)

    Google Scholar 

  25. Mitter, S.K., Newton, N.J.: Information and entropy flow in the Kalman-Bucy filter. J. Stat. Phys. 118, 145–167 (2005)

    Article  MathSciNet  Google Scholar 

  26. Newton, N.J.: Interactive statistical mechanics and nonlinear filtering. J. Stat. Phys. 133, 711–737 (2008)

    Article  MathSciNet  Google Scholar 

  27. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2006)

    Google Scholar 

  28. Duncan, T.E.: On the calculation of mutual information. SIAM J. Appl. Math. 19, 215–220 (1970)

    Article  MathSciNet  Google Scholar 

  29. Elworthy, K.D.: Stochastic Differential Equations on Manifolds. London Mathematical Society Lecture Notes in Mathematics, vol. 20. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  30. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. M. Dekker, New York (1991)

    Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referee for carefully reading the paper and suggesting a number of improvements in its presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel J. Newton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Newton, N.J. (2018). Nonlinear Filtering and Information Geometry: A Hilbert Manifold Approach. In: Ay, N., Gibilisco, P., Matúš, F. (eds) Information Geometry and Its Applications . IGAIA IV 2016. Springer Proceedings in Mathematics & Statistics, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-97798-0_7

Download citation

Publish with us

Policies and ethics