Skip to main content

OCT-Angiography Appliance in Glaucoma

  • Chapter
  • First Online:
Biophysical Properties in Glaucoma

Abstract

Novel imaging techniques promotes and maintains the continuous development in ophthalmology. Optical coherence tomography angiography (OCT-A) is a new modality of angiography presented in recent years. This technology allows non-invasively visualize the vasculature in the retina and the choroid with high resolution and provides greater insight into various retinal vascular pathologies.

As a valuable method OCTA is adjusted for evaluation of microvascular contribution in quite common diseases affecting the central macula (such as age-related macular, degeneration (AMD), diabetic maculopathy, retinal vascular occlusion, macular telangiectasia type 2), rarer diseases (including sickle cell retinopathy) and the optic nerve disorders [1,2,3,4,5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mastropasqua R, Di Antonio L, Di Staso S, et al. Optical coherence tomography angiography in retinal vascular diseases and choroidal neovascularization. J Ophthalmol. 2015;2015:343515.

    Article  Google Scholar 

  2. Hwang TS, Gao SS, Liu L, et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134:367–73.

    Article  Google Scholar 

  3. Thorell MR, Zhang Q, Huang Y, et al. Swept-source OCT angiography of macular telangiectasia type 2. Ophthalmic Surg Lasers Imaging Retina. 2014;45:369–80.

    Article  Google Scholar 

  4. Minvielle W, Caillaux V, Cohen SY, et al. Macular microangiopathy in sickle cell disease using optical coherence tomography angiography. Am J Ophthalmol. 2016;164:137–44.

    Article  Google Scholar 

  5. Akil H, Falavarjani KG, Sadda SR, Sadun AA. Optical coherence tomography angiography of the optic disc; an overview. J Ophthalmic Vis Res. 2017;12(1):98–105. https://doi.org/10.4103/2008-322X.200162.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Petrig BL, Riva CE, Hayreh SS. Laser Doppler flowmetry and optic nerve head blood flow. Am J Ophthalmol. 1999;127(4):413–25.

    Article  CAS  Google Scholar 

  7. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994;38(Suppl):S3–6.

    Article  Google Scholar 

  8. Prünte C, Orgül S, Flammer J. Abnormalities of microcirculation in glaucoma: facts and hints. Curr Opin Ophthalmol. 1998;9(2):50–5.

    Article  Google Scholar 

  9. Januleviciene I, Sliesoraityte I, Siesky B, et al. Diagnostic compatibility of structural and haemodynamic parameters in open-angle glaucoma patients. Acta Ophthalmol. 2008;86:552–7.

    Article  Google Scholar 

  10. Grieshaber MC, et al. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol. 2007;52(suppl 2):S144–54.

    Article  Google Scholar 

  11. Tektas O-Y, Lütjen-Drecoll E, Scholz M. Qualitative and quantitative morphologic changes in the vasculature and extracellularmatrixoftheprelaminaropticnerveheadineyes with POAG. Invest Ophthalmol Vis Sci. 2010;51(10):5083–91.

    Article  Google Scholar 

  12. Gao SS, Jia Y, Zhang M, et al. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT27–36.

    Article  Google Scholar 

  13. Koustenis A, et al. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017;101:16–20. https://doi.org/10.1136/bjophthalmol-2016-309389.

    Article  PubMed  Google Scholar 

  14. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20:4710–25.

    Article  Google Scholar 

  15. Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3:3127–37.

    Article  Google Scholar 

  16. Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20:100901.

    Article  Google Scholar 

  17. Stanga PE, Tsamis E, Papayannis A, et al. Swept-source optical coherence tomography angio™ (Topcon Corp, Japan): technology review. Dev Ophthalmol. 2016;56:13–7.

    Article  Google Scholar 

  18. Burak T. Optical coherence tomography angiography—a general view. Eur Ophthalmic Rev. 2016;10(1):39–42. https://doi.org/10.17925/EOR.2016.10.01.39.

    Article  Google Scholar 

  19. Wan KH, Leung CK. Optical coherence tomography angiography in glaucoma: a mini-review. F1000Res. 2017;6:1686. https://doi.org/10.12688/f1000research.11691.1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Harris A, Kagemann L, Ehrlich R, Rospigliosi C, Moore D, Siesky B. Measuring and interpreting ocular blood flow and metabolism in glaucoma. J Ophthalmol. 2008;43:328–36. https://doi.org/10.3129/i08-051.

    Article  Google Scholar 

  21. Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol. 2013;13(1):36–42. https://doi.org/10.1016/j.coph.2012.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Gugleta K. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014;92:252–66. https://doi.org/10.1111/aos.12298.

    Article  Google Scholar 

  23. Zion IB, Harris A, Moore D, et al. Interobserver repeatability of Heidelberg retinal flowmetry using pixel-by-pixel analysis. J Glaucoma. 2009;18:280–3.

    Article  Google Scholar 

  24. Rhee DJ. Glaucoma. Color atlas & synopsis of clinical ophthalmology. Chapter 9. 2nd ed: Wills Eye Institute. p. 136–49.

    Google Scholar 

  25. Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L. Doppler optical coherence tomography. Prog Retin Eye Res. 2014;41(100):26–43. https://doi.org/10.1016/j.preteyeres.2014.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bearelly S, Rao S, Fekrat S. Anaphylaxis following intravenous fluorescein angiography in avitreoretinal clinic: report of4 cases. Can J Ophthalmol. 2009;44:444–5.

    Article  Google Scholar 

  27. Cole ED, Novais EA, Louzada RN, et al. Contemporary retinal imaging techniques in diabetic retinopathy: a review. Clin Exp Ophthalmol. 2016;44:289–99.

    Article  Google Scholar 

  28. Chen FK, Viljoen RD, Bukowska DM. Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases. Clin Exp Ophthalmol. 2016;44:388–99.

    Article  Google Scholar 

  29. Kuehlewein L, Bansal M, Lenis TL, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol. 2015;160:739–48.

    Article  Google Scholar 

  30. Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015;35:2163–80.

    Article  Google Scholar 

  31. Chen CL, Wang RK. Optical coherence tomography based angiography. Biomed Opt Express. 2017;8(2):1056–82.

    Article  Google Scholar 

  32. Holló G. Intrasession and between-visit variability of sector peripapillary angioflow vessel density values measured with the Angiovue optical coherence tomograph in different retinal layers in ocular hypertension and glaucoma. PLoS One. 2016;11(8):e0161631.

    Article  Google Scholar 

  33. Rao HL, Pradhan ZS, Weinreb RN, et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;177:106–15.

    Article  Google Scholar 

  34. Lévêque PM, Zéboulon P, Brasnu E, et al. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J Ophthalmol. 2016;2016:6956717.

    Article  Google Scholar 

  35. Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy glaucoma suspects, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57:451–9.

    Article  Google Scholar 

  36. Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133(9):1045–52.

    Article  Google Scholar 

  37. Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–32.

    Article  Google Scholar 

  38. Chen CL, Zhang A, Bojikian KD, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT475–85.

    Article  Google Scholar 

  39. Rao HL, Pradhan ZS, Weinreb RN, et al. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS One. 2017;12(3):e0173930.

    Article  Google Scholar 

  40. Muniz JA, de Athaide LM, Gomes BD, Finlay BL, Silveira LC. Ganglion cell and displaced amacrine cell density distribution in the retina of the howler monkey (Alouatta caraya). PLoS One. 2014;9:e115291. https://doi.org/10.1371/journal.pone.0115291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim HJ, Lee SY, Park KH, Kim DM, Jeoung JW. Glaucoma diagnostic ability of layer-by-layer segmented ganglion cell complex by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57:4799–805. https://doi.org/10.1167/iovs.16-19214.

    Article  CAS  PubMed  Google Scholar 

  42. Browning DJ. Anatomy and pathologic anatomy of retinal vein occlusions retinal vein occlusions. New York: Saunders; 2012. p. 12–4.

    Book  Google Scholar 

  43. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5. https://doi.org/10.1038/359843a0.

    Article  CAS  PubMed  Google Scholar 

  44. Xu H, Yu J, Kong X, Sun X, Jiang C. Macular microvasculature alterations in patients with primary open-angle glaucoma: a cross-sectional study. Medicine. 2016;95:e4341.

    Article  Google Scholar 

  45. Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S, et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016;171:75–83. https://doi.org/10.1016/j.ajo.2016.08.030.

    Article  PubMed  Google Scholar 

  46. Kim DY, Fingler J, Zawadzki RJ, Park SS, Morse LS, Schwartz DM, et al. Noninvasive imaging of the foveal avascular zone with high-speed, phase-variance optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:85–92. https://doi.org/10.1167/iovs.11-8249.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Arend O, Wolf S, Jung F, Bertram B, Postgens H, Toonen H, et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991;75:514–8.

    Article  CAS  Google Scholar 

  48. Kuehlewein L, Tepelus TC, An L, Durbin MK, Srinivas S, Sadda SR. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography. Invest Ophthalmol Vis Sci. 2015;56:3984–8. https://doi.org/10.1167/iovs.15-16510.

    Article  CAS  PubMed  Google Scholar 

  49. Adhi M, Filho MA, Louzada RN, Kuehlewein L, de Carlo TE, Baumal CR, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:486–94. https://doi.org/10.1167/iovs.15-18907.

    Article  Google Scholar 

  50. Kwon J, Choi J, Shin JW, Lee J, Kook MS. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in Glaucoma patients with central visual field defects. Invest Ophthalmol Vis Sci. 2017;58:1637–45. https://doi.org/10.1167/iovs.16-21079.

    Article  PubMed  Google Scholar 

  51. Tan CS, Lim LW, Chow VS, Chay IW, Tan S, Cheong KX, et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci. 2016;57:224–34. https://doi.org/10.1167/iovs.15-18869.

    Article  Google Scholar 

  52. Choi J, Kwon J, Shin JW, Lee J, Lee S, Kook MS. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS One. 2017;12(9):e0184948. https://doi.org/10.1371/journal.pone.0184948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akvile Stoskuviene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoskuviene, A. (2019). OCT-Angiography Appliance in Glaucoma. In: Januleviciene, I., Harris, A. (eds) Biophysical Properties in Glaucoma. Springer, Cham. https://doi.org/10.1007/978-3-319-98198-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98198-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98197-0

  • Online ISBN: 978-3-319-98198-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics