Skip to main content

Quarkonium

  • Chapter
  • First Online:
The Quark Structure of Hadrons

Part of the book series: Lecture Notes in Physics ((LNP,volume 949))

  • 1232 Accesses

Abstract

Quarkonia are mesons made of \(q\overline {q}\) pairs of the same flavour, such as the Jψ(1S) (\(c\overline {c}\) “charmonium”), the Υ(1S) (\(b\overline {b}\) “bottomonium”), and even the ϕ (\(s\overline {s}\) “strangeonium”), as well as their radial and orbital excitations. These states are bound by the strong interaction mediated by gluons. The term “quarkonium” has been coined in analogy to the electromagnetically bound e +e system (positronium). In the previous section we have dealt with the \(c\overline {c}\) and \(b\overline {b}\) ground state ( = 0) vector mesons and their radial excitations (ψ and Υ sequences). The present chapter is devoted to their  > 0 orbital excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In symmetric e +e colliders the electron and positron collide with the same energies, hence the B and \(\overline {B}\) mesons produced at the Υ(4S) are emitted back-to-back and the collision point, where the B and \(\overline {B}\) are produced, cannot be determined. In asymmetric colliders both B mesons are emitted into the same hemisphere. The production point can then be reconstructed to study oscillations and CP violation in the \(B^0-\overline {B}^0\) system (see e.g [23]).

References

  1. Deutsch, M.: Phys. Rev. 82, 455 (1951)

    Article  ADS  Google Scholar 

  2. Aghion, S., et al.: Phys. Rev. A 94, 012507 (2016), and references therein

    Google Scholar 

  3. Conti, R.S., et al.: Phys. Lett. A 177, 43 (1993)

    Article  ADS  Google Scholar 

  4. Tanabashi, M., et al. (Particle Data Group): Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  5. Bloom, E.D.: International Symposium on Lepton and Photon Interaction at High Energy, Batavia, SLAC-PUB-2425 (1979)

    Google Scholar 

  6. Partridge, R., et al.: Phys. Rev. Lett. 45, 1150 (1980)

    Article  ADS  Google Scholar 

  7. Baglin, C., et al.: Phys. Lett. B 171, 135 (1986)

    Article  ADS  Google Scholar 

  8. Armstrong, T.A., et al.: Phys. Rev. Lett. 69, 2337 (1992)

    Article  ADS  Google Scholar 

  9. Andreotti, M., et al.: Phys. Rev. D 72, 032001 (2005)

    Article  ADS  Google Scholar 

  10. Ablikim, M., et al.: Nucl. Instrum. Methods Phys. Res. A 614, 345 (2010)

    Article  ADS  Google Scholar 

  11. Dobbs, S.: Hadron 2017 Conference, Salamanca, Spain (2017)

    Google Scholar 

  12. Ablikim, M., et al.: Phys. Rev. D 86, 092009 (2012)

    Article  ADS  Google Scholar 

  13. Han, K., et al.: Phys. Rev. Lett. 49, 1612 (1982)

    Article  ADS  Google Scholar 

  14. Lee-Franzini, J.: AIP Conf. Proc. 424, 85 (1998)

    Article  ADS  Google Scholar 

  15. Klopfenstein, C., et al.: Phys. Rev. Lett. 51, 160 (1983)

    Article  ADS  Google Scholar 

  16. Briere, R.A., et al.: Report CLNS 01/1742 (2001)

    Google Scholar 

  17. Artuso, M., et al.: Phys. Rev. Lett. 94, 032001 (2005)

    Article  ADS  Google Scholar 

  18. Aad, G., et al.: Phys. Rev. Lett. 108, 152001 (2012)

    Article  ADS  Google Scholar 

  19. Sirunyan, A.M., et al.: Phys. Rev. Lett. 121, 092002 (2018)

    Article  ADS  Google Scholar 

  20. Aubert, B., et al.: Phys. Rev. Lett. 101, 071801 (2008)

    Article  ADS  Google Scholar 

  21. Mizuk, R., et al.: Phys. Rev. Lett. 109, 23200 (2012)

    Article  Google Scholar 

  22. Abashian, A., et al.: Nucl. Instrum. Methods Phys. Res. 479, 117 (2002)

    Article  ADS  Google Scholar 

  23. Amsler, C., Nuclear and Particle Physics, section 20.2. IOP Publishing, Bristol (2015)

    Google Scholar 

  24. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, 1, p. 819. Wiley, New York (1997)

    Google Scholar 

  25. Eichten, E., et al.: Phys. Rev. D 21, 203 (1980)

    Article  ADS  Google Scholar 

  26. Quigg, C., Rosner, J.L.: Phys. Rep. 56, 167 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  27. Martin, A.: Phys. Lett. 93B, 338 (1980)

    Article  ADS  Google Scholar 

  28. Pakhlova, G.V., Pakhlov, P.N., Eidelman, S.I.: Physics-Uspekhi 53, 219 (2010)

    Article  ADS  Google Scholar 

  29. Brambilla, N., et al.: CERN Yellow Report CERN-2005-005 (2005). arXiv:hep-ph/0412158

    Google Scholar 

  30. Godfrey, S., Isgur, N.: Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  31. Quarkonium Working Group: http://www.qwg.to.infn.it/

  32. Baumgartner, B., Grosse, H., Martin, A.: Nucl. Phys. B 254, 528 (1985)

    Article  ADS  Google Scholar 

  33. Buchmuller, W.: Phys. Lett. 112B, 479 (1982)

    Article  ADS  Google Scholar 

  34. Cahn, R.N., Jackson, J.D.: Phys. Rev. D 68, 037502 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amsler, C. (2018). Quarkonium. In: The Quark Structure of Hadrons. Lecture Notes in Physics, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-319-98527-5_9

Download citation

Publish with us

Policies and ethics