Skip to main content

Photonic, Plasmonic, Fluidic, and Luminescent Devices Based on New Polyfunctional Photo-Thermo-Refractive Glass

  • Chapter
  • First Online:
Optics, Photonics and Laser Technology

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 218))

Abstract

Fluoride Photo-Thermo-Refractive (PTR) glasses are very promising materials for recording Bragg gratings for different laser applications. Design and fabrication of novel chloride and bromide PTR glasses will be discussed. It was shown that various technologies as photo-thermo-induced crystallization, holograms recording, laser treatment, ion exchange, and chemical etching can be used for the cases of the fluoride, chloride and bromide PTR glasses, the so called polyfunctional. It is shown that polyfunctional PTR glasses can be used for the creation of novel optical elements and devices like holographic volume Bragg gratings, optical, luminescent and plasmonic waveguides, hollow structures, thermo-and biosensors, phosphors for LEDs, down-converters for solar cells have been designed and fabricated based on these new polyfunctional PTR glass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, L.B. Glebov, Volume Bragg gratings as ultra-narrow and multiband optical filters, in Proceedings of SPIE, vol. 8428 (2012), p. 84280C–84280C–11

    Google Scholar 

  2. S.A. Ivanov, A.E. Angervaks, A.S. Shcheulin, Application of photo-thermo-refractive glass as a holographic medium for holographic collimator gun sights, in Proceedings of SPIE, vol. 9131 (2014), p. 91311B

    Google Scholar 

  3. L.B. Glebov, Photosensitive holographic glass—new approach to creation of high power lasers. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. Part B 48(3), 123–128 (2007)

    Google Scholar 

  4. L.B. Glebov, V.I. Smirnov, C.M. Stickley, I.V. Ciapurin, New approach to robust optics for HEL systems. Proc. SPIE 4724, 101–109 (2002)

    Article  ADS  Google Scholar 

  5. N.V. Nikonorov, E.I. Panysheva, I.V. Tunimanova, A.V. Chukharev, Influence of glass composition on the refractive index change upon photothermoinduced crystallization. Glass Phys. Chem. 27(3), 241–249 (2001)

    Article  Google Scholar 

  6. L. Glebova, J. Lumeau, M. Klimov, E.D. Zanotto, L.B. Glebov, Role of bromine on the thermal and optical properties of photo-thermo-refractive glass. J. Non-Cryst. Solids 354(2–9), 456–461 (2008)

    Article  ADS  Google Scholar 

  7. S.D. Stookey, G.H. Beall, J.E. Pierson, Full-color photosensitive glass. J. Appl. Phys. 49(10), 5114–5123 (1978)

    Article  ADS  Google Scholar 

  8. Y.M. Sgibnev, N.V. Nikonorov, A.I. Ignatiev, Luminescence of silver clusters in ion-exchanged cerium-doped photo-thermo-refractive glasses. J. Lumin. 176, 292–297 (2016)

    Article  Google Scholar 

  9. V.D. Dubrovin, A.I. Ignatiev, N.V. Nikonorov, A.I. Sidorov, T.A. Shakhverdov, D.S. Agafonova, Luminescence of silver molecular clusters in photo-thermo-refractive glasses. Opt. Mater. 36(4), 753–759 (2014)

    Article  ADS  Google Scholar 

  10. L.B. Glebov, N.V. Nikonorov, E.I. Panysheva, G.T. Petrovskii, V.V. Savvin, I.V. Tunimanova, V.A. Tsekhomskii, New ways to use photosensitive glasses for recording volume phase holograms. Opt. Spectrosc. 73(2), 237–241 (1992)

    ADS  Google Scholar 

  11. I. Dyamant, A.S. Abyzov, V.M. Fokin, E.D. Zanotto, J. Lumeau, L.N. Glebova, L.B. Glebov, Crystal nucleation and growth kinetics of NaF in photo-thermo-refractive glass. J. Non-Cryst. Solids 378, 115–120 (2013)

    Article  ADS  Google Scholar 

  12. N. Nikolay, I. Sergey, D. Victor, I. Alexander, New photo-thermo-refractive glasses for holographic optical elements: properties and applications, in Holographic Materials and Optical Systems, ed. by I. Naydenova (InTech, 2017)

    Google Scholar 

  13. I.M. Reviews, A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass, Dec 2016

    Google Scholar 

  14. T. Cardinal, O.M. Efimov, H.G. Francois-Saint-Cyr, L.B. Glebov, L.N. Glebova, V.I. Smirnov, Comparative study of photo-induced variations of X-ray diffraction and refractive index in photo-thermo-refractive glass. J. Non-Cryst. Solids 325(1–3), 275–281 (2003)

    Article  ADS  Google Scholar 

  15. J.J. Mock, D.R. Smith, S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 485–491 (2003)

    Article  ADS  Google Scholar 

  16. N.V. Nikonorov, A.I. Sidorov, V.A. Tsekhomskiĭ, K.E. Lazareva, Effect of a dielectric shell of a silver nanoparticle on the spectral position of the plasmon resonance of the nanoparticle in photochromic glass. Opt. Spectrosc. 107(5), 705–707 (2009)

    Article  Google Scholar 

  17. J. Lumeau, L. Glebova, V. Golubkov, E.D. Zanotto, L.B. Glebov, Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass. Opt. Mater. 32(1), 139–146 (2009)

    Article  ADS  Google Scholar 

  18. V.D. Dubrovin, A.I. Ignatiev, N.V. Nikonorov, Chloride photo-thermo-refractive glasses. Opt. Mater. Express 6(5), 1701 (2016)

    Article  ADS  Google Scholar 

  19. N. Nikonorov, V. Aseev, A. Ignatiev, A. Zlatov, New polyfunctional photo-thermo-refractive glasses for photonics applications, in Technical Digest of 7th International Conference on Optics-photonics Design & Fabrication (2010), pp. 209–210

    Google Scholar 

  20. A.M. Efimov, A.I. Ignatiev, N.V. Nikonorov, E.S. Postnikov, Quantitative UV-VIS spectroscopic studies of photo-thermo-refractive glasses. I. Intrinsic, bromine-related, and impurity-related UV absorption in photo-thermo-refractive glass matrices. J. Non-Cryst. Solids 357(19–20), 3500–3512 (2011)

    Article  ADS  Google Scholar 

  21. L. Glebova, J. Lumeau, L.B. Glebov, Photo-thermo-refractive glass co-doped with Nd3+ as a new laser medium. Opt. Mater. 33(12), 1970–1974 (2011)

    Article  ADS  Google Scholar 

  22. V.A. Aseev, N.V. Nikonorov, Spectroluminescence properties of photothermo-refractive nanoglass-ceramics doped with ytterbium and erbium ions. J. Opt. Technol. 75(10), 676–681 (2008)

    Article  Google Scholar 

  23. P. Hofmann, R. Amezcua-correa, E. Antonio-lopez, D. Ott, M. Segall, I. Divliansky, J. Lumeau, L. Glebova, L. Glebov, N. Peyghambarian, A. Schülzgen, Strong Bragg gratings in highly photosensitive photo-thermo-refractive-glass optical fiber. IEEE Photonics Technol. Lett. 25(1), 25–28 (2013)

    Article  ADS  Google Scholar 

  24. P. Crump, G. Erbert, H. Wenzel, C. Frevert, C.M. Schultz, K.-H. Hasler, R. Staske, B. Sumpf, A. Maaßdorf, F. Bugge, S. Knigge, G. Trankle, Efficient high-power laser diodes. IEEE J. Sel. Top. Quantum Electron. 19(4) (2013)

    Article  ADS  Google Scholar 

  25. I.S. Tarasov, High-power semiconductor separate-confinement double heterostructure lasers. Quantum Electron. 40(8), 661–681 (2010)

    Article  ADS  Google Scholar 

  26. N.A. Pikhtin, S.O. Slipchenko, Z.N. Sokolova, A.L. Stankevich, D.A. Vinokurov, I.S. Tarasov, Z.I. Alferov, 16 W continuous-wave output power from 100 μm-aperture laser with quantum well asymmetric heterostructure. Electron. Lett. 40(22), 1413–1414 (2004)

    Article  Google Scholar 

  27. G.B. Venus, A. Sevian, V.I. Smirnov, L.B. Glebov, High-brightness narrow-line laser diode source with volume Bragg-grating feedback. Proc. SPIE 5711, 166–176 (2005)

    Article  ADS  Google Scholar 

  28. S.A. Ivanov, N.V. Nikonorov, A.I. Ignat’ev, V.V. Zolotarev, Y.V. Lubyanskiy, N.A. Pikhtin, I.S. Tarasov, Narrowing of the emission spectra of high-power laser diodes with a volume Bragg grating recorded in photo-thermo-refractive glass. J. Semicond. 50(6), 819–823 (2016)

    Article  ADS  Google Scholar 

  29. Y.M. Sgibnev, N.V. Nikonorov, V.N. Vasilev, A.I. Ignatiev, Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method. J. Lightwave Technol. 33(17), 3730–3735 (2015)

    Article  ADS  Google Scholar 

  30. J. Upatnieks, A.M. Tai, Development of the holographic sight, vol. 2968, pp. 272–281

    Google Scholar 

  31. D.J. DeBitetto, White-light viewing of surface holograms by simple dispersion compensation. Appl. Phys. Lett. 9(12), 417–418 (1966)

    Article  ADS  Google Scholar 

  32. H. Kogelnik, C.V. Shank, Stimulated emission in a periodic structure. Appl. Phys. Lett. 18(4), 152–154 (1971)

    Article  ADS  Google Scholar 

  33. M. Nakamura, H.W. Yen, A. Yariv, E. Garmire, S. Somekh, H.L. Garvin, Laser oscillation in epitaxial GaAs waveguides with corrugation feedback. Appl. Phys. Lett. 23(5), 224–225 (1973)

    Article  ADS  Google Scholar 

  34. Y. Sato, T. Taira, V. Smirnov, L. Glebova, L. Glebov, Continuous-wave diode-pumped laser action of Nd3+-doped photo-thermo-refractive glass. Opt. Lett. 36(12), 2257–2259 (2011)

    Article  ADS  Google Scholar 

  35. S.A. Ivanov, V.F. Lebedev, A.I. Ignat’ev, N.V. Nikonorov, Laser action on neodymium heavily doped photo-thermo-refractive glass (2016), pp. 29–31

    Google Scholar 

  36. A. Ryasnyanskiy, N. Vorobiev, V. Smirnov, J. Lumeau, L. Glebova, O. Mokhun, C. Spiegelberg, M. Krainak, A. Glebov, L. Glebov, DBR and DFB lasers in neodymium- and ytterbium-doped photothermorefractive glasses. Opt. Lett. 39(7), 2156–2159 (2014)

    Article  ADS  Google Scholar 

  37. M.E. Nordberg, E.L. Mochel, H.M. Garfinkel, J.S. Olcott, Strengthening by ion exchange. J. Am. Ceram. Soc. 47(5), 215–219 (1964)

    Article  Google Scholar 

  38. S.S. Kistler, Stresses in glass produced by nonuniform exchange of monovalent ions. J. Am. Ceram. Soc. 45(2), 59–68 (1962)

    Article  Google Scholar 

  39. T. Izawa, H. Nakagome, Optical waveguide formed by electrically induced migration of ions in glass plates. Appl. Phys. Lett. 21(12), 584–586 (1972)

    Article  ADS  Google Scholar 

  40. A.N. Miliou, R. Srivastava, R.V. Ramaswamy, Modeling of the index change in K(+)-Na(+) ion-exchanged glass. Appl. Opt. 30(6), 674–681 (1991)

    Article  ADS  Google Scholar 

  41. R.V. Ramaswamy, R. Srivastava, Ion-exchanged glass waveguides: a review. J. Lightwave Technol. 6(6), 984–1000 (1988)

    Article  ADS  Google Scholar 

  42. J. Albert, G. Yip, Stress-induced index change for K+-Na+ ion exchange in glass. Electron. Lett. 23(14), 737–738 (1987)

    Article  Google Scholar 

  43. W.G. French, A.D. Pearson, Refractive index changes produced in glass by ion exchange. Am. Ceram. Soc. Bull. 49(11) (1970)

    Google Scholar 

  44. N.V. Nikonorov, Influence of ion-exchange treatment on the physicochemical properties of glass and waveguide surfaces. Glass Phys. Chem. 25(3), 207–232 (1999)

    Google Scholar 

  45. A.K. Varshneya, Chemical strengthening of glass: lessons learned and yet to be learned. Int. J. Appl. Glass Sci. 1(2), 131–142 (2010)

    Article  Google Scholar 

  46. A.K. Varshneya, The physics of chemical strengthening of glass: room for a new view. J. Non-Cryst. Solids 356(44–49), 2289–2294 (2010)

    Article  ADS  Google Scholar 

  47. S. Karlsson, B. Jonson, C. Stålhandske, The technology of chemical glass strengthening—a review. Glass Technol.: Eur. J. Glass Sci. Technol. Part A, 51(2), 41–54, 2010

    Google Scholar 

  48. E.M. Sgibnev, A.I. Ignatiev, N.V. Nikonorov, A.M. Efimov, E.S. Postnikov, Effects of silver ion exchange and subsequent treatments on the UV-VIS spectra of silicate glasses. I. Undoped, CeO2-doped, and (CeO2 + Sb2O3)-codoped photo-thermo-refractive matrix glasses. J. Non-Cryst. Solids 378, 213–226 (2013)

    Article  ADS  Google Scholar 

  49. A.M. Efimov, A.I. Ignatiev, N.V. Nikonorov, E.S. Postnikov, Photo-thermo-refractive glasses: effects of dopants on their ultraviolet absorption spectra. Int. J. Appl. Glass Sci. 6(2), 109–127 (2015)

    Article  Google Scholar 

  50. J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)

    Article  Google Scholar 

  51. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58(1), 267–297 (2007)

    Article  ADS  Google Scholar 

  52. T. Findakly, Glass waveguides by ion exchange: a review. Opt. Eng. 25(2), 244–250 (1985)

    ADS  Google Scholar 

  53. N.V. Nikonorov, G.T. Petrovskii, Ion-exchanged glasses in integrated optics: the current state of research and prospects (a review). Glass Phys. Chem. 25(1), 16–55 (1999)

    Google Scholar 

  54. Y. Sgibnev, N. Nikonorov, A. Ignatiev, V. Vasilyev, M. Sorokina, Photostructurable photo-thermo-refractive glass. Opt. Express 24(5), 4563 (2016)

    Article  ADS  Google Scholar 

  55. M. Kösters, H.-T. Hsieh, D. Psaltis, K. Buse, Holography in commercially available photoetchable glasses. Appl. Opt. 44(17), 3399–3402 (2005)

    Article  ADS  Google Scholar 

  56. A. Razzaghi, M. Maleki, Y. Azizian-Kalandaragh, The influence of post-annealing treatment on the wettability of Ag+/Na+ ion-exchanged soda-lime glasses. Appl. Surf. Sci. 270, 604–610 (2013)

    Article  ADS  Google Scholar 

  57. V.D. Dubrovin, A.I. Ignat’ev, N.V. Nikonorov, A.I. Sidorov, Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses. Tech. Phys. 59(5), 733–735 (2014)

    Article  ADS  Google Scholar 

  58. K. Bourhis, A. Royon, G. Papon, M. Bellec, Y. Petit, L. Canioni, M. Dussauze, V. Rodriguez, L. Binet, D. Caurant, M. Treguer, J.J. Videau, T. Cardinal, Formation and thermo-assisted stabilization of luminescent silver clusters in photosensitive glasses. Mater. Res. Bull. 48(4), 1637–1644 (2013)

    Article  Google Scholar 

  59. A.S. Kuznetsov, V.K. Tikhomirov, V.V. Moshchalkov, UV-driven efficient white light generation by Ag nanoclusters dispersed in glass host. Mater. Lett. 92, 4–6 (2013)

    Article  Google Scholar 

  60. A.I. Ignat’ev, N.V Nikonorov, A.I. Sidorov, T.A. Shakhverdov, Influence of UV irradiation and heat treatment on the luminescence of molecular silver clusters in photo-thermo-refractive glasses. Opt. Spectrosc. 114(5), 769–774 (2013)

    Article  ADS  Google Scholar 

  61. Y.M. Sgibnev, N.V. Nikonorov, A.I. Ignatiev, High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: influence of antimony content and heat treatment parameters. J. Lumin. 188, 172–179 (2017)

    Article  ADS  Google Scholar 

  62. D.S. Agafonova, E.V. Kolobkova, I.A. Ignatiev, N.V. Nikonorov, T.A. Shakhverdov, P.S. Shirshnev, A.I. Sidorov, V.N. Vasiliev, Luminescent glass fiber sensors for ultraviolet radiation detection by the spectral conversion. Opt. Eng. 54(11), 117107 (2015)

    Article  ADS  Google Scholar 

  63. D. Klyukin, V. Dubrovin, A. Pshenova, S. Putilin, T. Shakhverdov, A. Tsypkin, N. Nikonorov, A. Sidorov, Formation of luminescent and non-luminescent silver nanoparticles in silicate glasses by NIR femtosecond laser pulses and subsequent thermal treatment: the role of halogenides. Opt. Eng. 55(6), in print (2016)

    Article  ADS  Google Scholar 

  64. A.I. Ignatiev, D.A. Klyukin, V.S. Leontieva, N.V. Nikonorov, T.A. Shakhverdov, A.I. Sidorov, Formation of luminescent centers in photo-thermo-refractive silicate glasses under the action of UV laser nanosecond pulses. Opt. Mater. Express 5(7), 1635 (2015)

    Article  ADS  Google Scholar 

  65. D.A. Klyukin, A.I. Sidorov, A.I. Ignatiev, N.V. Nikonorov, Luminescence quenching and recovering in photo-thermo-refractive silver-ion doped glasses. Opt. Mater. 38, 233–237 (2014)

    Article  ADS  Google Scholar 

  66. V. Aseev, A. Abdrshin, E. Kolobkova, R. Nuryev, K. Moskaleva, N. Nikonorov, Thermal sensors based on ytterbium-erbium doped nano-glassceramics, in Proceedings—10th International Conference on Laser and Fiber-Optical Networks Modeling, LFNM 2010 (2010), pp. 45–46

    Google Scholar 

  67. V.I. Egorov, A.I. Sidorov, A.V. Nashchekin, P.A. Obraztsov, P.N. Brunkov, Investigation of the morphological features of silver nanoparticles in the near-surface layers of glass when they are synthesized by heat treatment in water vapor. J. Opt. Technol. 80(3), 174–178 (2013)

    Article  Google Scholar 

  68. P.A. Obraztsov, A.V. Nashchekin, N.V. Nikonorov, A.I. Sidorov, A.V. Panfilova, P.N. Brunkov, Formation of silver nanoparticles on the silicate glass surface after ion exchange. Phys. Solid State 55(6), 1272–1278 (2013)

    Article  ADS  Google Scholar 

  69. V.I. Egorov, A.V. Nashchekin, A.I. Sidorov, Formation of an ensemble of silver nanoparticles in the process of surface evaporation of glass optical waveguides doped with silver ions by the radiation of a pulsed CO2 laser. Quantum Electron. 45(9), 858–862 (2015)

    Article  ADS  Google Scholar 

  70. V.I. Egorov, A.I. Sidorov, Modelling of sensitivity of plasmon sensory elements based on silver nanoparticles obtained by laser evaporation and ablation. Opt. Spectrosc. 121(1), 90–94 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of Russian Federation (Project 16.1651.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nikonorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikonorov, N. et al. (2018). Photonic, Plasmonic, Fluidic, and Luminescent Devices Based on New Polyfunctional Photo-Thermo-Refractive Glass. In: Ribeiro, P., Raposo, M. (eds) Optics, Photonics and Laser Technology. Springer Series in Optical Sciences, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-98548-0_5

Download citation

Publish with us

Policies and ethics