Skip to main content

Functional Genomics

  • Chapter
  • First Online:
Omics Applications for Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1102))

Abstract

Functional genomics encompasses diverse disciplines in molecular biology and bioinformatics to comprehend the blueprint, regulation, and expression of genetic elements that define the physiology of an organism. The deluge of sequencing data in the postgenomics era has demanded the involvement of computer scientists and mathematicians to create algorithms, analytical software, and databases for the storage, curation, and analysis of biological big data. In this chapter, we discuss on the concept of functional genomics in the context of systems biology and provide examples of its application in human genetic disease studies, molecular crop improvement, and metagenomics for antibiotic discovery. An overview of transcriptomics workflow and experimental considerations is also introduced. Lastly, we present an in-house case study of transcriptomics analysis of an aromatic herbal plant to understand the effect of elicitation on the biosynthesis of volatile organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winkler H (1920) Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. Verlag Von Gustav Fischer, Jena

    Book  Google Scholar 

  2. Kaul S et al (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  CAS  Google Scholar 

  3. Adams MD et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  Google Scholar 

  4. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  Google Scholar 

  5. Craig Venter J et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  Google Scholar 

  6. Waterston RH et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  Google Scholar 

  7. Auton A et al (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  Google Scholar 

  8. Harrow J et al (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22:1760–1774

    Article  CAS  Google Scholar 

  9. Ziller MJ et al (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–481

    Article  CAS  Google Scholar 

  10. Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476–486

    Article  CAS  Google Scholar 

  11. Koepfli KP, Paten B, O'Brien SJ, Genome KC o S (2015) The genome 10K project: a way forward. Annu Rev Anim Biosci 3:57–111

    Article  CAS  Google Scholar 

  12. Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22:50–55

    Article  CAS  Google Scholar 

  13. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  14. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  Google Scholar 

  15. Purcell S et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  Google Scholar 

  16. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868

    Article  CAS  Google Scholar 

  17. Nielsen CB, Cantor M, Dubchak I, Gordon D, Wang T (2010) Visualizing genomes: techniques and challenges. Nat Methods 7:S5–S15

    Article  CAS  Google Scholar 

  18. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  Google Scholar 

  19. Krzywinski M et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  Google Scholar 

  20. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  CAS  Google Scholar 

  21. Kersten RD et al (2013) Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proc Natl Acad Sci U S A 110:E4407–E4416

    Article  CAS  Google Scholar 

  22. Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5:936–948

    Article  CAS  Google Scholar 

  23. Kanehisa M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  CAS  Google Scholar 

  24. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  Google Scholar 

  25. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630

    Article  CAS  Google Scholar 

  26. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  Google Scholar 

  27. Ellegren H (2008) Comparative genomics and the study of evolution by natural selection. Mol Ecol 17:4586–4596

    Article  Google Scholar 

  28. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    Article  CAS  Google Scholar 

  29. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    Article  CAS  Google Scholar 

  30. McCarthy JJ, McLeod HL, Ginsburg GS (2013) Genomic medicine: a decade of successes, challenges, and opportunities. Sci Transl Med 5:189sr4

    Article  Google Scholar 

  31. McCarthy MI et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369

    Article  CAS  Google Scholar 

  32. Conesa A, Mortazavi A (2014) The common ground of genomics and systems biology. BMC Syst Biol 8:S1

    Article  Google Scholar 

  33. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  CAS  Google Scholar 

  34. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278–289

    Article  Google Scholar 

  35. Wilson BJ, Nicholls SG (2015) The human genome project, and recent advances in personalized genomics. Risk Manage Healthc Policy 8:9–20

    Article  Google Scholar 

  36. Shastry BS (2009) Single nucleotide polymorphisms. Springer, Berlin, pp 3–22

    Book  Google Scholar 

  37. Orkin S, Antonarakis S, Kazazian H (1984) Base substitution at position-88 in a beta-thalassemic globin gene. Further evidence for the role of distal promoter element ACACCC. J Biol Chem 259:8679–8681

    CAS  PubMed  Google Scholar 

  38. Bond GL et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    Article  CAS  Google Scholar 

  39. Horn S et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961

    Article  CAS  Google Scholar 

  40. Madelaine R et al (2018) A screen for deeply conserved non-coding GWAS SNPs uncovers a MIR-9-2 functional mutation associated to retinal vasculature defects in human. Nucleic Acids Res 46:3517–3531

    Article  Google Scholar 

  41. Janssens ACJW, van Duijn CM (2008) Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet 17:R166–R173

    Article  CAS  Google Scholar 

  42. Gurdasani D et al (2015) The African genome variation project shapes medical genetics in Africa. Nature 517:327–332

    Article  CAS  Google Scholar 

  43. Goff SA et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  Google Scholar 

  44. Yu J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  Google Scholar 

  45. Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  Google Scholar 

  46. Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  Google Scholar 

  47. Xu X et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  CAS  Google Scholar 

  48. Brenchley R et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  Google Scholar 

  49. Singh R et al (2013) Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature 500:335–339

    Article  CAS  Google Scholar 

  50. Rahman AYA et al (2013) Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics 14:75

    Article  Google Scholar 

  51. He J et al (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  Google Scholar 

  52. Ong-Abdullah M et al (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533

    Article  CAS  Google Scholar 

  53. Rinaldo AR, Ayliffe M (2015) Gene targeting and editing in crop plants: a new era of precision opportunities. Mol Breed 35:1–15

    Article  CAS  Google Scholar 

  54. Wang Y et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  Google Scholar 

  55. Jiang W et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  Google Scholar 

  56. Lawrenson T et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  Google Scholar 

  57. Svitashev S et al (2015) Targeted mutagenesis, precise gene editing and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol:00793.02015, 169(2):931–945

    Article  Google Scholar 

  58. Li Z et al (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol:00783.02015, 169(2):960–970

    Article  Google Scholar 

  59. Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 39:1–2

    Google Scholar 

  60. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  Google Scholar 

  61. Davies J (1999) Millennium bugs. Trends Genet 15:M2–M5

    Article  CAS  Google Scholar 

  62. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  Google Scholar 

  63. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    Article  CAS  Google Scholar 

  64. Ling LL et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455

    Article  CAS  Google Scholar 

  65. MacNeil I et al (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3:301–308

    CAS  PubMed  Google Scholar 

  66. Gillespie DE et al (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306

    Article  CAS  Google Scholar 

  67. Brady SF, Clardy J (2004) Palmitoylputrescine, an antibiotic isolated from the heterologous expression of DNA extracted from bromeliad tank water. J Nat Prod 67:1283–1286

    Article  CAS  Google Scholar 

  68. Oyama LB et al (2017) Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis. Front Chem 5:51

    Article  Google Scholar 

  69. Nasrin S et al (2018) Chloramphenicol derivatives with antibacterial activity identified by functional metagenomics. J Nat Prod 81:1321

    Article  CAS  Google Scholar 

  70. Hover BM et al (2018) Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol 3:415

    Article  CAS  Google Scholar 

  71. Li B et al (2015) Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J 9:2490–2502

    Article  CAS  Google Scholar 

  72. Forsberg KJ et al (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111

    Article  CAS  Google Scholar 

  73. Wilson MC et al (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58–62

    Article  CAS  Google Scholar 

  74. Hrdlickova R, Toloue M, Tian B (2017) RNA-seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8. https://doi.org/10.1002/wrna.1364

    Article  Google Scholar 

  75. Ma X, Tang Z, Qin J, Meng Y (2015) The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 12:709–719

    Article  Google Scholar 

  76. Aviner R, Geiger T, Elroy-Stein O (2013) PUNCH-P for global translatome profiling: methodology, insights and comparison to other techniques. Translation 1:e27516

    Article  Google Scholar 

  77. Li W et al (2015) Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis. BMC Genomics 16:1069

    Article  Google Scholar 

  78. Saliba A-E, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860

    Article  CAS  Google Scholar 

  79. Dominissini D (2014) Roadmap to the epitranscriptome. Science 346:1192

    Article  Google Scholar 

  80. Lamarre S et al (2018) Optimization of an RNA-seq differential gene expression analysis depending on biological replicate number and library size. Front. Plant Sci. 9:108

    Google Scholar 

  81. Ching T, Huang S, Garmire LX (2014) Power analysis and sample size estimation for RNA-seq differential expression. RNA 20:1684–1696

    Article  CAS  Google Scholar 

  82. de Klerk E, den Dunnen JT, ‘t Hoen PAC (2014) RNA sequencing: from tag-based profiling to resolving complete transcript structure. Cell Mol Life Sci 71:3537–3551

    Google Scholar 

  83. Jamaluddin ND, Mohd Noor N, Goh H-H (2017) Genome-wide transcriptome profiling of Carica papaya L. embryogenic callus. Physiol Mol Biol Plants 23:357–368

    Article  CAS  Google Scholar 

  84. Conesa A et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  Google Scholar 

  85. Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA sequencing: a web resource for analysis on the cloud. PLOS Comput Biol 11:e1004393

    Article  Google Scholar 

  86. Nagasaki H et al (2013) DDBJ read annotation pipeline: a cloud computing-based pipeline for high-throughput analysis of next-generation sequencing data. DNA Res 20:383–390

    Article  CAS  Google Scholar 

  87. Afgan E et al (2018) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544

    Article  Google Scholar 

  88. Bair E (2013) Identification of significant features in DNA microarray data. Wiley Interdiscip Rev Comput Stat 5. https://doi.org/10.1002/wics.1260

    Article  Google Scholar 

  89. An D, Cao HX, Li C, Humbeck K, Wang W (2018) Isoform sequencing and state-of-art applications for unravelling complexity of plant transcriptomes. Genes 9:43

    Article  Google Scholar 

  90. Moll P, Ante M, Seitz A, Reda T (2014) QuantSeq 3′ mRNA sequencing for RNA quantification. Nat Methods 11:972

    Article  Google Scholar 

  91. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671

    Article  CAS  Google Scholar 

  92. Christapher P, Parasuraman S, Christina J, Asmawi MZ, Vikneswaran M (2015) Review on Polygonum minus. Huds, a commonly used food additive in Southeast Asia. Pharm Res 7:1–6

    CAS  Google Scholar 

  93. Gor MC et al (2011) Identification of cDNAs for jasmonic acid-responsive genes in Polygonum minus roots by suppression subtractive hybridization. Acta Physiol Plant 33:283–294

    Article  CAS  Google Scholar 

  94. Roslan ND et al (2012) Flavonoid biosynthesis genes putatively identified in the aromatic plant Polygonum minus via expressed sequences tag (EST) analysis. Int J Mol Sci 13:2692–2706

    Article  CAS  Google Scholar 

  95. Ee SF et al (2013) Transcriptome profiling of genes induced by salicylic acid and methyl jasmonate in Polygonum minus. Mol Biol Rep 40:2231–2241

    Article  CAS  Google Scholar 

  96. Loke K-K et al (2016) RNA-seq analysis for secondary metabolite pathway gene discovery in Polygonum minus. Genomics Data 7:12–13

    Article  Google Scholar 

  97. Loke KK et al (2017) Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids. Peer J 2017. PeerJ 5:e2938

    Article  Google Scholar 

  98. Rahnamaie-Tajadod R, Loke KK, Goh HH, Noor NM (2017) Differential gene expression analysis in Polygonum minus leaf upon 24h of methyl jasmonate elicitation. Front Plant Sci 8:109

    Article  Google Scholar 

  99. Nazaruddin N et al (2017) Small RNA-seq analysis in response to methyl jasmonate and abscisic acid treatment in Persicaria minor. Genomics Data 12:157–158

    Article  Google Scholar 

  100. Song AAL et al (2012) Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production. PLOS ONE 7:e52444

    Article  CAS  Google Scholar 

  101. Ee SF et al (2014) Functional characterization of sesquiterpene synthase from Polygonum minus. Sci World J 2014:840592

    Article  Google Scholar 

  102. Ker DS et al (2017) Purification and biochemical characterization of recombinant Persicaria minor β-sesquiphellandrene synthase. PeerJ 5:e2961

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoe-Han Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goh, HH., Ng, C.L., Loke, KK. (2018). Functional Genomics. In: Aizat, W., Goh, HH., Baharum, S. (eds) Omics Applications for Systems Biology. Advances in Experimental Medicine and Biology, vol 1102. Springer, Cham. https://doi.org/10.1007/978-3-319-98758-3_2

Download citation

Publish with us

Policies and ethics