Skip to main content

Proteomics in Systems Biology

  • Chapter
  • First Online:
Omics Applications for Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1102))

Abstract

Proteomics is the study of proteins, the workhorses of cells. Proteins can be subjected to various post-translational modifications, making them dynamic to external perturbation. Proteomics can be divided into four areas: sequence, structural, functional and interaction and expression proteomics. These different areas used different instrumentations and have different focuses. For example, sequence and structural proteomics mainly focus on elucidating a particular protein sequence and structure, respectively. Meanwhile, functional and interaction proteomics concentrate on protein function and interaction partners, whereas expression proteomics allows the cataloguing of total proteins in any given samples, hence providing a holistic overview of various proteins in a cell. The application of expression proteomics in cancer and crop research is detailed in this chapter. The general workflow of expression proteomics consisting the use of mass spectrometry instrumentation has also been described, and some examples of proteomics studies are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Humphery-Smith I (2015) The 20th anniversary of proteomics and some of its origins. Proteomics 15:1773–1776

    Article  CAS  Google Scholar 

  2. Banks RE, Dunn MJ, Hochstrasser DF, Sanchez J-C, Blackstock W, Pappin DJ, Selby PJ (2000) Proteomics: new perspectives, new biomedical opportunities. Lancet 356:1749–1756

    Article  CAS  Google Scholar 

  3. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:1–5

    Article  Google Scholar 

  4. Twyman RM (2013) Principles of proteomics. Garland Science, Abingdon

    Google Scholar 

  5. Edman P, Begg G (1967) A Protein Sequenator. Eur J Biochem 1:80–91

    Article  CAS  Google Scholar 

  6. Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422:216–225

    Article  CAS  Google Scholar 

  7. Woolfson M (2018) The development of structural x-ray crystallography. Phys Scr 93:1–32

    Article  Google Scholar 

  8. Bisswanger H (2014) Enzyme assays. Perspect Sci 1:41–55

    Article  Google Scholar 

  9. LaBaer J, Ramachandran N (2005) Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 9:14–19

    Article  CAS  Google Scholar 

  10. Reymond Sutandy FX, Qian J, Chen C-S, Zhu H (2013) Overview of protein microarrays. Curr Protoc Protein Sci 72:1–21

    Google Scholar 

  11. Lueong SS, Hoheisel JD, Alhamdani MSS (2014) Protein microarrays as tools for functional proteomics: achievements, promises and challenges. J Proteomics Bioinform 7:1–10

    Google Scholar 

  12. Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LDN, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang T-C, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TSK, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509:575–581

    Article  CAS  Google Scholar 

  13. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese J-H, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587

    Article  CAS  Google Scholar 

  14. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  Google Scholar 

  15. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  CAS  Google Scholar 

  16. Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  Google Scholar 

  17. www.cruk.org/cancerstats (2014)

  18. www.cancer.gov (2014)

  19. Savino R, Paduano S, Preianò M, Terracciano R (2012) The proteomics big challenge for biomarkers and new drug-targets discovery. Int J Mol Sci 13:13926–13948

    Article  CAS  Google Scholar 

  20. Maurya P, Meleady P, Dowling P, Clynes M (2007) Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res 27:1247–1255

    CAS  PubMed  Google Scholar 

  21. Sallam RM (2015) Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers 2015:1–12

    Article  Google Scholar 

  22. Brichory F, Beer D, LeNaour F, Giordano T, Hanash S (2001) Proteomics-based identification of protein gene product 9.5 as a tumor antigen that induces a humoral immune response in lung cancer. Cancer Res 61:7908–7912

    CAS  PubMed  Google Scholar 

  23. Planque C, Kulasingam V, Smith CR, Reckamp K, Goodglick L, Diamandis EP (2009) Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines. Mol Cell Proteomics 8:2746–2758

    Article  CAS  Google Scholar 

  24. Okano T, Seike M, Kuribayashi H, Soeno C, Ishii T, Kida K, Gemma A (2016) Identification of haptoglobin peptide as a novel serum biomarker for lung squamous cell carcinoma by serum proteome and peptidome profiling. Int J Oncol 48:945–952

    Article  CAS  Google Scholar 

  25. Rice SJ, Liu X, Miller B, Joshi M, Zhu J, Caruso C, Gilbert C, Toth J, Reed M, Rassaei N (2015) Proteomic profiling of human plasma identifies apolipoprotein E as being associated with smoking and a marker for squamous metaplasia of the lung. Proteomics 15:3267–3277

    Article  CAS  Google Scholar 

  26. Zhang W, Li Y, Yang S, Li W, Ming Z, Zhang Y, Hou Y, Niu Z, Rong B, Zhang X (2013) Differential mitochondrial proteome analysis of human lung adenocarcinoma and normal bronchial epithelium cell lines using quantitative mass spectrometry. Thorac Cancer 4:373–379

    Article  CAS  Google Scholar 

  27. Radon TP, Massat NJ, Jones R, Alrawashdeh W, Dumartin L, Ennis D, Duffy SW, Kocher HM, Pereira SP, Guarner L (2015) Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin Cancer Res 21:3512–3521

    Article  CAS  Google Scholar 

  28. Makawita S, Smith C, Batruch I, Zheng Y, Rückert F, Grützmann R, Pilarsky C, Gallinger S, Diamandis EP (2011) Integrated proteomic profiling of cell line conditioned media and pancreatic juice for the identification of pancreatic cancer biomarkers. Mol Cell Proteomics 10:1–21

    Article  Google Scholar 

  29. Sun Z-L, Zhu Y, Wang F-Q, Chen R, Peng T, Fan Z-N, Xu Z-K, Miao Y (2007) Serum proteomic-based analysis of pancreatic carcinoma for the identification of potential cancer biomarkers. Biochimica Biophys Acta, Proteins Proteomics 1774:764–771

    Article  CAS  Google Scholar 

  30. Wu J-Y, Cheng C-C, Wang J-Y, Wu D-C, Hsieh J-S, Lee S-C, Wang W-M (2014) Discovery of tumor markers for gastric cancer by proteomics. PLOS ONE 9:e84158

    Article  Google Scholar 

  31. Ryu J-W, Kim H-J, Lee Y-S, Myong N-H, Hwang C-H, Lee G-S, Yom H-C (2003) The proteomics approach to find biomarkers in gastric cancer. J Korean Med Sci 18:505–509

    Article  CAS  Google Scholar 

  32. FAO (2015) Climate change and food security: risks and responses. Food and Agriculture Organization of the United Nations (FAO). www.fao.org

  33. Barkla BJ (2016) Identification of abiotic stress protein biomarkers by proteomic screening of crop cultivar diversity. Proteomes 4:26

    Article  Google Scholar 

  34. Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security – a review. Prog Nat Sci 19:1665–1674

    Article  Google Scholar 

  35. Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  Google Scholar 

  36. Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. Int J Mol Sci 16:20913–20942

    Article  Google Scholar 

  37. Alvarez S, Roy Choudhury S, Pandey S (2014) Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res 13:1688–1701

    Article  CAS  Google Scholar 

  38. Liu H, Sultan MARF, li Liu X, Zhang J, Yu F, Xian Zhao H (2015) Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). PLOS ONE 10:e0121852

    Article  Google Scholar 

  39. Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y (2014) Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteome 109:290–308

    Article  CAS  Google Scholar 

  40. Qin N, Xu W, Hu L, Li Y, Wang H, Qi X, Fang Y, Hua X (2016) Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma 253:1503–1512

    Article  CAS  Google Scholar 

  41. Maksup S, Roytrakul S, Supaibulwatana K (2014) Physiological and comparative proteomic analyses of Thai jasmine rice and two check cultivars in response to drought stress. J Plant Interact 9:43–55

    Article  CAS  Google Scholar 

  42. Muthurajan R, Shobbar Z-S, Jagadish S, Bruskiewich R, Ismail A, Leung H, Bennett J (2011) Physiological and proteomic responses of rice peduncles to drought stress. Mol Biotechnol 48:173–182

    Article  CAS  Google Scholar 

  43. Rabello AR, Guimarães CM, Rangel PH, da Silva FR, Seixas D, de Souza E, Brasileiro AC, Spehar CR, Ferreira ME, Mehta  (2008) Identification of drought-responsive genes in roots of upland rice (Oryza sativa L.). BMC Genomics 9:485

    Article  Google Scholar 

  44. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  CAS  Google Scholar 

  45. Kumar RR, Singh GP, Goswami S, Pathak H, Rai RD (2014) Proteome analysis of wheat (Triticum aestivum) for the identification of differentially expressed heat-responsive proteins. Aust J Crop Sci 8:973

    CAS  Google Scholar 

  46. Laino P, Shelton D, Finnie C, De Leonardis AM, Mastrangelo AM, Svensson B, Lafiandra D, Masci S (2010) Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics 10:2359–2368

    Article  CAS  Google Scholar 

  47. Wang X, Dinler BS, Vignjevic M, Jacobsen S, Wollenweber B (2015) Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Sci 230:33–50

    Article  CAS  Google Scholar 

  48. Mu Q, Zhang W, Zhang Y, Yan H, Liu K, Matsui T, Tian X, Yang P (2017) iTRAQ-based quantitative proteomics analysis on rice anther responding to high temperature. Int J Mol Sci 18:1811

    Article  Google Scholar 

  49. Xu E, Chen M, He H, Zhan C, Cheng Y, Zhang H, Wang Z (2017) Proteomic analysis reveals proteins involved in seed imbibition under salt stress in rice. Front Plant Sci 7:2006

    Article  Google Scholar 

  50. Li X-J, Yang M-F, Zhu Y, Liang Y, Shen S-H (2011) Proteomic analysis of salt stress responses in rice shoot. J Plant Biol 54:384

    Article  CAS  Google Scholar 

  51. Jankangram W, Thammasirirak S, Jones MG, Hartwell J, Theerakulpisut P (2011) Proteomic and transcriptomic analysis reveals evidence for the basis of salt sensitivity in Thai jasmine rice (Oryza sativa L. cv. KDML 105). Afr J Biotechnol 10:16157–16166

    CAS  Google Scholar 

  52. Jorrín-Novo JV, Pascual J, Sánchez-Lucas R, Romero-Rodríguez MC, Rodríguez-Ortega MJ, Lenz C, Valledor L (2015) Fourteen years of plant proteomics reflected in Proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics 15:1089–1112

    Article  Google Scholar 

  53. Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  CAS  Google Scholar 

  54. Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    Article  CAS  Google Scholar 

  55. Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteome 72:285–314

    Article  Google Scholar 

  56. Redmile-Gordon MA, Armenise E, White RP, Hirsch PR, Goulding KWT (2013) A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biol Biochem 67:166–173

    Article  CAS  Google Scholar 

  57. Okutucu B, Dınçer A, Habib Ö, Zıhnıoglu F (2007) Comparison of five methods for determination of total plasma protein concentration. J Biochem Biophys Methods 70:709–711

    Article  CAS  Google Scholar 

  58. Martínez-Esteso MJ, Martínez-Márquez A, Sellés-Marchart S, Morante-Carriel JA, Bru-Martínez R (2015) The role of proteomics in progressing insights into plant secondary metabolism. Front Plant Sci 6:504

    Article  Google Scholar 

  59. Finoulst I, Pinkse M, Van Dongen W, Verhaert P (2011) Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. Biomed Res Int 2011:245291

    Google Scholar 

  60. Cañas B, Piñeiro C, Calvo E, López-Ferrer D, Gallardo JM (2007) Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 1153:235–258

    Article  Google Scholar 

  61. Neverova I, Van Eyk JE (2005) Role of chromatographic techniques in proteomic analysis. J Chromatogr B 815:51–63

    Article  CAS  Google Scholar 

  62. Issaq HJ, Veenstra TD (2008) Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. BioTechniques 44:697

    Article  CAS  Google Scholar 

  63. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  CAS  Google Scholar 

  64. Zhu W, Smith JW, Huang C-M (2009) Mass spectrometry-based label-free quantitative proteomics. Biomed Res Int 2010:840518

    Google Scholar 

  65. Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28:710–721

    Article  CAS  Google Scholar 

  66. Lin D, Tabb DL, Yates JR (2003) Large-scale protein identification using mass spectrometry. Biochimica Biophys Acta, Proteins Proteomics 1646:1–10

    Article  CAS  Google Scholar 

  67. Romero-Rodríguez MC, Pascual J, Valledor L, Jorrín-Novo J (2014) Improving the quality of protein identification in non-model species. Characterization of Quercus ilex seed and Pinus radiata needle proteomes by using SEQUEST and custom databases. J Proteome 105:85–91

    Article  Google Scholar 

  68. Jorrín-Novo JV (2015) Scientific standards and MIAPEs in plant proteomics research and publications. Front Plant Sci 6:473

    Article  Google Scholar 

  69. Taylor CF, Paton NW, Lilley KS, Binz P-A, Julian RK, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893

    Article  CAS  Google Scholar 

  70. Webb KJ, Xu T, Park SK, Yates JR (2013) Modified MuDPIT separation identified 4488 proteins in a system-wide analysis of quiescence in yeast. J Proteome Res 12:2177–2184

    Article  CAS  Google Scholar 

  71. Rosenberger G, Koh CC, Guo T, Röst HL, Kouvonen P, Collins BC, Heusel M, Liu Y, Caron E, Vichalkovski A, Faini M, Schubert OT, Faridi P, Ebhardt HA, Matondo M, Lam H, Bader SL, Campbell DS, Deutsch EW, Moritz RL, Tate S, Aebersold R (2014) A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci Data 1:1–15

    Article  Google Scholar 

  72. Evans VC, Barker G, Heesom KJ, Fan J, Bessant C, Matthews DA (2012) De novo derivation of proteomes from transcriptomes for transcript and protein identification. Nat Methods 9:1207–1211

    Article  CAS  Google Scholar 

  73. Mudenda L, Pierlé SA, Turse JE, Scoles GA, Purvine SO, Nicora CD, Clauss TRW, Ueti MW, Brown WC, Brayton KA (2014) Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int J Parasitol 44:1029–1037

    Article  CAS  Google Scholar 

  74. Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–941

    Article  CAS  Google Scholar 

  75. Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M (2007) Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol 143:1327–1346

    Article  CAS  Google Scholar 

  76. Rocco M, D’Ambrosio C, Arena S, Faurobert M, Scaloni A, Marra M (2006) Proteomic analysis of tomato fruits from two ecotypes during ripening. Proteomics 6:3781–3791

    Article  CAS  Google Scholar 

  77. Aizat WM, Able JA, Stangoulis JCR, Able AJ (2013) Proteomic analysis during capsicum ripening reveals differential expression of ACC oxidase isoform 4 and other candidates. Funct Plant Biol 40:1115–1128

    Article  CAS  Google Scholar 

  78. Zeng X, Li Y, Ling H, Chen J, Guo S (2018) Revealing proteins associated with symbiotic germination of Gastrodia elata by proteomic analysis. Bot Stud 59:8

    Article  Google Scholar 

  79. Lu Q, Zhang ZS, Zhan RT, He R (2018) Proteomic analysis of Zanthoxylum nitidum seeds dormancy release: influence of stratification and gibberellin. Ind Crop Prod 122:7–15

    Article  CAS  Google Scholar 

  80. Kim Y, Chung WS, Jang HJ (2018) Proteins isolated of Pueraria radix possible to cause allergenic react with immunoglobulin E in human sera. Mol Cell Toxicol 14:233–239

    Article  CAS  Google Scholar 

  81. Vikram P, Chiruvella KK, Ripain IHA, Arifullah M (2014) A recent review on phytochemical constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian Pac J Trop Biomed 4:430–435

    Article  Google Scholar 

  82. Bunawan H, Talip N, Noor NM (2011) Foliar anatomy and micromorphology of Polygonum minus Huds. And their taxonomic implications. Vascular 5:5–10

    Google Scholar 

  83. Azlim Almey A, Ahmed Jalal Khan C, Syed Zahir I, Mustapha Suleiman K, Aisyah M, Kamarul Rahim K (2010) Total phenolic content and primary antioxidant activity of methanolic and ethanolic extracts of aromatic plants’ leaves. Int Food Res J 17:1077–1084

    Google Scholar 

  84. Baharum SN, Bunawan H, Ghani M a A, Mustapha WAW, Noor NM (2010) Analysis of the chemical composition of the essential oil of Polygonum minus Huds. Using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF MS). Molecules 15:7006–7015

    Article  CAS  Google Scholar 

  85. Khairudin K, Sukiran NA, Goh H-H, Baharum SN, Noor NM (2014) Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy. Metabolomics 10:203–211

    Article  CAS  Google Scholar 

  86. Goh HH, Khairudin K, Sukiran NA, Baharum SN, Normah M (2015) Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. Plant Biol 18:130–139

    Article  Google Scholar 

  87. Aizat WM, Ibrahim S, Rahnamaie-Tajadod R, Loke K-K, Goh H-H, Noor NM (2018) Extensive mass spectrometry proteomics data of Persicaria minor herb upon methyl jasmonate treatment. Data Brief 16:1091–1094

    Article  Google Scholar 

  88. Amin SR, Erdin S, Ward RM, Lua RC, Lichtarge O (2013) Prediction and experimental validation of enzyme substrate specificity in protein structures. Proc Natl Acad Sci 110:E4195–E4202

    Article  CAS  Google Scholar 

  89. Hassan M, Maarof ND, Ali ZM, Noor NM, Othman R, Mori N (2012) Monoterpene alcohol metabolism: identification, purification, and characterization of two geraniol dehydrogenase isoenzymes from Polygonum minus leaves. Biosci Biotechnol Biochem 76:1463–1470

    Article  CAS  Google Scholar 

  90. Ahmad-Sohdi NAS, Seman-Kamarulzaman A-F, Mohamed-Hussein Z-A, Hassan M (2015) Purification and characterization of a novel NAD (P)+-farnesol dehydrogenase from Polygonum minus leaves. PLOS ONE 10:e0143310

    Article  Google Scholar 

  91. Seman-Kamarulzaman A-F, Mohamed-Hussein Z-A, Ng CL, Hassan M (2016) Novel NAD+-farnesal dehydrogenase from Polygonum minus leaves. Purification and characterization of enzyme in juvenile hormone III biosynthetic pathway in plant. PLOS ONE 11:e0161707

    Article  Google Scholar 

  92. Nik-Abdul-Ghani N-R, Mohamed-Hussein Z-A, Hassan M (2017) Citral dehydrogenase involved in geraniol oxidation pathway: purification, characterization and kinetic studies from Persicaria minor (Polygonum minus Huds.). J Plant Biochem Biotechnol 27:1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Mohd Aizat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aizat, W.M., Hassan, M. (2018). Proteomics in Systems Biology. In: Aizat, W., Goh, HH., Baharum, S. (eds) Omics Applications for Systems Biology. Advances in Experimental Medicine and Biology, vol 1102. Springer, Cham. https://doi.org/10.1007/978-3-319-98758-3_3

Download citation

Publish with us

Policies and ethics