Skip to main content

Where Angels Fear to Tread: Developments in Cave Ecology

  • Chapter
  • First Online:
Cave Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

The chapter anticipates the application of new or emerging methodological, technological and analytical approaches to the discipline of subterranean ecology. It notes the lack of basic biology (natural history) available for subterranean species outside the northern temperate zone and the disparity of knowledge across regions. It highlights the importance of establishing and contributing to open-access regional and global biodiversity data bases including genetic data bases. It examines idiosyncratically selected areas of subterranean ecology that are considered likely to progress partly through the application of these methodologies. It also covers areas of ecology judged to have been neglected in the context of subterranean ecosystems. Included are the general topics of methodological and technological innovations, basic biology (natural history), enumeration and movement, sampling in terrestrial and aquatic systems, diversity and the potential of metagenomics (eDNA), food sources and species interactions, the transition to subterranean life (trogloneogenesis), cave climate and climate change and biofilms and biogeochemistry. It considers the age of subterranean lineages to a proxy for the circumstances that drove the lineage underground and concludes to be alert for the possibility of opportunistic field experiments.

“Where angels fear to tread” was first written by Alexander Pope in his 1711 poem “An Essay on Criticism”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams KM, Guzik MT, Cooper SJ et al (2012) What lies beneath: molecular phylogenetics and ancestral state reconstruction of the ancient subterranean Australian Parabathynellidae (Syncarida, Crustacea). Mol Phylogenet Evol 64:130–144

    Article  CAS  PubMed  Google Scholar 

  • Adams M, Humphreys WF (1993) Patterns of genetic diversity within selected subterranean fauna of the Cape Range peninsula, Western Australia: systematic and biogeographic implications. In: Humphreys WF (ed) The biogeography of Cape Range, Western Australia. Rec West Aust Mus Suppl 45:145–164

    Google Scholar 

  • Ahuja D, Parande D (2012) Review optical sensors and their applications. J Sci Res Rev 1:60–68

    Article  Google Scholar 

  • Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3:489–498

    Article  CAS  PubMed  Google Scholar 

  • Andrieux C (1990) Le climat des grottes. Les Dossiers Archeol 152:64–67

    Google Scholar 

  • Azmy SN, Sah SAM, Shafie NJ et al (2012) Counting in the dark: non-intrusive laser scanning for population counting and identifying roosting bats. Sci Rep 2:524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baehr BC, Harvey MS, Burger M et al (2012) The New Australasian goblin spider genus Prethopalpus (Araneae, Oonopidae). Bull Am Mus Nat Hist 369:1–113

    Article  Google Scholar 

  • Baker A, Spencer GM (2004) Characterisation of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232

    Article  CAS  PubMed  Google Scholar 

  • Barker D (1959) The distribution and systematic position of the Thermosbaenacea. Hydrobiologia 13:209–235

    Article  Google Scholar 

  • Barr TC Jr (1968) Cave ecology and the evolution of troglobites. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Appleton-Century-Crofts, New York, pp 35–102

    Chapter  Google Scholar 

  • Barr TC Jr, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Syst 16:313–337

    Article  Google Scholar 

  • Bauzà-Ribot MM, Juan C, Nardi F et al (2012) Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Curr Biol 22:2069–2074

    Article  CAS  PubMed  Google Scholar 

  • Bauzà-Ribot MM, Juan C, Nardi F et al (2013) Reply to Phillips et al. Curr Biol 23:R605–R606

    Article  PubMed  CAS  Google Scholar 

  • Bennelongia Environmental Consultants (2015a) Strategic environmental assessment: description of regional subterranean fauna prepared for BHP Billiton Iron Ore. Final Report, September 2015

    Google Scholar 

  • Bennelongia Environmental Consultants (2015b) Yeelirrie subterranean fauna assessment prepared for Cameco Australia. Final Report September 2015, Jolimont WA

    Google Scholar 

  • Betke M, Hirsh DE, Makris NC et al (2008) Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. J Mammal 89:18–24

    Article  Google Scholar 

  • Bichuette ME, Trajano E (2003) A population study of epigean and subterranean Potamolithus snails from southeast Brazil (Mollusca: Gastropoda: Hydrobiidae). Hydrobiologia 505:107–117

    Article  Google Scholar 

  • Bishop RE, Humphreys WF, Longley G (2014) Epigean and hypogean Palaemonetes sp. (Decapoda: Palaemonidae) from Edwards Aquifer: an examination of trophic structure and metabolism. Subterr Biol 14:79–102

    Article  Google Scholar 

  • Bishop RE, Humphreys WF, Cukrov N et al (2015) ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. J Crustacean Biol 35:511–514

    Article  Google Scholar 

  • Boero F (1996) Episodic events: their relevance to ecology and evolution. Mar Ecol 17:237–250

    Article  Google Scholar 

  • Botello A, Illiffe T, Alvarez F et al (2012) Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) base on mitochondrial and nuclear data. J Biogeogr 40:594–607

    Article  Google Scholar 

  • Bou C, Rouch R (1967) Un nouveau champ de recherches sur la faune aquatique souterraine. CR Acad Sci Paris 265D:369–370

    Google Scholar 

  • Boulton AJ, Fenwick GD, Hancock PJ et al (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr Syst 22:103–116

    Article  Google Scholar 

  • Bradford T, Adams M, Guzik M et al (2013) Patterns of population genetic variation in sympatric chiltoniid amphipods within a calcrete aquifer reveal a dynamic subterranean environment. Heredity 111:77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brankovits D, Pohlman JW, Niemann H et al (2017) Methane- and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nat Commun 8:1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso P, Borges PAV, Triantis KA et al (2011) Adapting the IUCN Red List criteria for invertebrates. Biol Conserv 144:2432–2440

    Article  Google Scholar 

  • Chakrabarty P, Davis MP, Sparks JS (2012) The first record of a trans-oceanic sister-group relationship between obligate vertebrate troglobites. PLoS One 7:e44083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Wang L, Ji R et al (2004) Impacts of suspended sediment on the ecosystem in Lake Michigan: a comparison between the 1998 and 1999 plume events. J Geophys Res 109:C10S05

    Google Scholar 

  • Christidis L, Boles W (2008) Systematics and taxonomy of Australian birds. CSIRO, Collingwood

    Google Scholar 

  • Christman MC, Culver DC (2001) The relationship between cave biodiversity and available habitat. J Biogeogr 28:367–380

    Article  Google Scholar 

  • Christner BC, Priscu JC, Achberger AM et al (2014) A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512:310–315

    Article  CAS  PubMed  Google Scholar 

  • Codd JR, Sanderson KJ, Branford AJ (2003) Roosting activity budget of the southern bent-wing bat (Miniopterus schreibersii bassanii). Aust J Zool 51:307–316

    Article  Google Scholar 

  • Colwell FS, D’Hondt S (2013) Nature and extent of the deep biosphere. Rev Mineral Geochem 7:547–574

    Article  CAS  Google Scholar 

  • Culver DC (2012) Species interactions. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic Press, San Diego, pp 734–748

    Google Scholar 

  • Culver DC, Pipan T (2013) Subterranean ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 7, 2nd edn. Academic, Waltham, MA, pp 49–62

    Chapter  Google Scholar 

  • Culver DC, Pipan T (2014) Shallow subterranean habitats. Ecology, evolution and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17

    Google Scholar 

  • Culver DC, Wilkens H (2000) Critical review of the relevant theories of the evolution of subterranean animals. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 381–398

    Google Scholar 

  • Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves. The evolution of Gammarus minus. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Culver DC, Christman MC, Elliott WR et al (2003) The North American obligate cave fauna: regional patterns. Biodivers Conserv 12:441–468

    Article  Google Scholar 

  • Culver DC, Deharveng L, Bedos A et al (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128

    Article  Google Scholar 

  • Culver DC, Brancelj A, Pipan T (2012a) Epikarstic communities. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 288–295

    Chapter  Google Scholar 

  • Culver DC, Trontelj P, Zagmajster M et al (2012b) Paving the way for standardized and comparable subterranean biodiversity studies. Subterr Biol 10:43–50

    Article  Google Scholar 

  • Dahms H-U, Harder T, Qian P-Y (2007) Selective attraction and reproductive performance of a harpacticoid copepod in a response to biofilms. J Exp Marin Ecol Biol 341:228–238

    Article  Google Scholar 

  • Danielopol DL (1984) Ecological investigations on the alluvial sediments of the Danube in the Vienna area—a phreatobiological project. Verh Int Vereinigung Theor Angew Limnol 22:1755–1761

    Google Scholar 

  • Danielopol DL (1989) Groundwater fauna associated with riverine aquifers. J North Am Benthol Soci 8:18–35

    Article  Google Scholar 

  • Danielopol DL, Rouch R (2012) Invasion, active versus passive. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego

    Google Scholar 

  • Danielopol DL, Claret C, Marmonier P et al (1997) Sampling in springs and other ecotones. Conservation and protection of the biota of karst. In: Extended abstracts & field-trip guide for the symposium held 13–16 Feb, 1997, Nashville, Tennessee

    Google Scholar 

  • Danielopol DL, Griebler C, Gunatilaka A et al (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30:104–130

    Article  CAS  Google Scholar 

  • Dattagupta S, Schaperdoth I, Montanar A et al (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME J 3:935–943

    Article  CAS  PubMed  Google Scholar 

  • Davis J, Pavlova A, Thompson R et al (2013) Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Glob Chang Biol 19:1970–1984

    Article  PubMed  PubMed Central  Google Scholar 

  • Day M (2011) Protection of karst landscapes in the developing world: lessons from Central America, the Caribbean, and Southeast Asia. In: van Beynen P (ed) Karst management. Springer, Berlin, pp 439–458

    Chapter  Google Scholar 

  • De Bruyn M, Stelbrink B, Page TM et al (2013) Time and space in biogeography: response to Parenti and Ebach (2013). J Biogeogr 40:2204–2208

    Article  Google Scholar 

  • De Freitas CR, Littlejohn RN, Clarkson TS et al (1982) Cave climate: assessment of airflow and ventilation. Int J Climatol 2:383–397

    Article  Google Scholar 

  • Deharveng L (1988) 9. Nouvelles données sur le gaz carbonique des cols et des cavités de Thailande et de Sulawesi. Expedition Thai-Maros 86. Rapport spéléologique et scientifique (1987), pp 97–110. Association Pyrénéenne de Spéléologie éd., 103 rue de la Providence, 31500 Toulouse (France)

    Google Scholar 

  • Deharveng L, Bedos A (2000) Cave fauna of South East Asia, origins, evolution and ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 603–632

    Google Scholar 

  • Deharveng L, Bedos A (2012) Diversity patterns in the tropics. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego

    Google Scholar 

  • Deming J, Baross J (1993) Deep-sea smokers: windows to a subsurface biosphere? Geochim Cosmochim Acta 57:3219–3230

    Article  CAS  PubMed  Google Scholar 

  • Denniston RF, Villarini G, Gonzales AN et al (2015) Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern oscillation over the last two millennia. Proc Natl Acad Sci USA 112:4576–4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denniston R, Ummenhofer C, Wanamaker A et al (2016) Expansion and contraction of the Indo-Pacific tropical rain belt over the last three millennia. Sci Rep 6:34485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derkarabetian S, Steinmann DB, Hedin M (2010) Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from Montane western North America. PLoS One 5:e10388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Do C, Waples RS, Peel D et al (2014) Ne Estimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Dogsé P (1998) Designing and managing permanent monitoring plots as tools for implementing the convention on biological diversity. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity in North, Central and South America, and the Caribbean; research and monitoring. UNESCO and The Parthenon Publishing Group, Paris, pp 29–46

    Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing—linking microbial identity to function. Nat Rev Microbiol 3:499–504

    Article  CAS  PubMed  Google Scholar 

  • Eberhard S, Giachino PM (2011) Tasmanian Trechinae and Psydrinae (Coleoptera, Carabidae): a taxonomic and biogeographic synthesis, with description of new species and evaluation of the impact of Quaternary climate changes on evolution of the subterranean fauna. Subterr Biol 9:1–72

    Article  Google Scholar 

  • Eberhard SM, Humphreys WF (1999) Stygofauna survey – ore body 23 (Newman) and Mine Area C. A report prepared for BHP Iron Ore Pty

    Google Scholar 

  • Eberhard SM, Halse SA, Williams MR et al (2009) Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshw Biol 54:885–901

    Article  CAS  Google Scholar 

  • Engel AS (2012a) Chemoautotrophy. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 125–134

    Chapter  Google Scholar 

  • Engel AS (2012b) Microbes. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 490–499

    Chapter  Google Scholar 

  • EPA (2007) Sampling methods and survey considerations for subterranean fauna in Western Australia (Technical Appendix to Guidance Statement No. 54). Guidance Statement 54A (Draft). Perth, Western Australia, Environmental Protection Authority

    Google Scholar 

  • EPA (2013) Environmental assessment guideline No. 12 June 2013 Consideration of Subterranean Fauna in Environmental Impact Assessment in WA. Perth, Western Australia, Environmental Protection Authority

    Google Scholar 

  • Faille A, Casale A, Ribera I (2011) Phylogenetic relationships of west Mediterranean troglobitic Trechini ground beetles (Coleoptera: Carabidae). Zool Scr 40:282–295

    Article  Google Scholar 

  • Faille A, Casale A, Balke M et al (2013) A molecular phylogeny of Alpine subterranean Trechini (Coleoptera: Carabidae). BMC Evol Biol 13:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Faille A, Tänzler R, Toussaint EFA (2015) On the way to speciation: shedding light on the karstic phylogeography of the microendemic cave beetle Aphaenops cerberus in the Pyrenees. J Hered 106:692–699

    PubMed  Google Scholar 

  • Faimon J, Ličbinská M, Zajíček P (2012) Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic. Int J Speleol 41:17–28

    Article  Google Scholar 

  • Ferguson JA, Healey BG, Bronk KS et al (1997) Simultaneous monitoring of pH, CO2 and O2 using an optical imaging fiber. Anal Chim Acta 340:123–131

    Article  CAS  Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  CAS  PubMed  Google Scholar 

  • Fišer C, Pipan T, Culver DC (2014) The vertical extent of groundwater metazoans: an ecological and evolutionary perspective. Bioscience 64:971–979

    Article  Google Scholar 

  • Fišer Ž, Novak L, Luštrik R et al (2016) Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods. Sci Nat 103:7

    Article  CAS  Google Scholar 

  • Galassi DMP, Huys R, Reid JW (2009) Diversity, ecology and evolution of groundwater copepods. Freshw Biol 54:691–678

    Article  Google Scholar 

  • Galassi DMP, Lombardo P, Fiasca B et al (2014) Earthquakes trigger the loss of groundwater biodiversity. Sci Rep 4:6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibert J, Culver DC (2009) Assessing and conserving groundwater biodiversity: an introduction. Freshw Biol 54:639–648

    Article  Google Scholar 

  • Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52:473–481

    Article  Google Scholar 

  • Gnaspini P (1996) Population ecology of Goniosoma spelaeum, a cavernicolous harvestman from south-eastern Brazil (Arachnida: Opiliones: Gonyleptidae). J Zool 239:417–435

    Article  Google Scholar 

  • Gorički Š, Stanković D, Snoj A et al (2017) Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus. Sci Rep 7:45054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griebler C, Avramov M (2015) Groundwater ecosystem services: a review. Freshw Sci 34:355–367

    Article  Google Scholar 

  • Griebler C, Malard F, Lefébure T (2014) Current developments in groundwater ecology—from biodiversity to ecosystem function and services. Curr Opin Biotechnol 27:159–167

    Article  CAS  PubMed  Google Scholar 

  • Guzik MT, Austin AD, Cooper SJB et al (2010) Is the Australian subterranean fauna uniquely diverse? Invertebr Syst 24:407–418

    Article  Google Scholar 

  • Guzik MT, Cooper SJB, Humphreys WF et al (2009) Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Mol Ecol 18:3683–3698

    Article  CAS  PubMed  Google Scholar 

  • Hadley NF, Ahearn GA, Howarth FG (1981) Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J Arachnol 9:215–222

    Google Scholar 

  • Hahn HJ (2005) Unbaited phreatic traps: a new method of sampling stygofauna. Limnologica 35:248–261

    Article  Google Scholar 

  • Halse SA, Pearson GB (2014) Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterr Biol 13:17–34

    Article  Google Scholar 

  • Halse SA, Scanlon MD, Cocking JS (2002) Do springs provide a window to the groundwater fauna of the Australian arid zone? In: Proceedings of the International Association of Hydrogeologists Conference, Darwin, Australia 12–17 May 2002

    Google Scholar 

  • Halse SA, Scanlon MD, Cocking JS et al (2014) Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Rec West Aust Mus Suppl 78:443–483

    Article  Google Scholar 

  • Hartland A, Fenwick GD, Bury SJ (2011) Tracing sewage-derived organic matter into a shallow groundwater food web using stable isotope and fluorescence signatures. Mar Freshw Res 62:119–129

    Article  CAS  Google Scholar 

  • Harvey MS, Berry O, Edward KL et al (2008) Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebr Syst 22:167–194

    Article  CAS  Google Scholar 

  • Havird JC, Weeks JR, Hau S et al (2013) Invasive fishes in the Hawaiian anchialine ecosystem: investigating potential predator avoidance by endemic organisms. Hydrobiologia 716:189–201

    Article  CAS  Google Scholar 

  • Hedin M (2015) High-stakes species delimitation in eyeless cave spiders (Cicurina, Dictynidae, Araneae) from central Texas. Mol Ecol 24:346–361

    Article  PubMed  Google Scholar 

  • Herman SJ, Culver DC, Salzman J (2001) Groundwater ecosystems and the service of water purification. Stanf Environ Law J 20:479–495

    Google Scholar 

  • Herrick JE, Jones TH (2012) Soil ecology and ecosystems services. Oxford University Press, Oxford

    Google Scholar 

  • Hillary RM, Bravington MV, Patterson TA et al (2018) Genetic relatedness reveals total population size of white sharks in eastern Australia and New Zealand. Sci Rep 8:2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbs HH III (2012) Diversity patterns in the United States. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 251–264

    Chapter  Google Scholar 

  • Hoenemann M, Neiber MT, Humphreys WF et al (2013) Phylogenetic analyses and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data. J Crustac Biol 33:603–619

    Article  Google Scholar 

  • Hong BC, Shurin JB (2015) Latitudinal variation in the response of tidepool copepods to mean and daily range in temperature. Ecology 96:2348–2359

    Article  PubMed  Google Scholar 

  • Howarth FG (1980) The zoogeography of specialized cave animals: a bioclimatic model. Evolution 34:394–406

    Article  PubMed  Google Scholar 

  • Howarth FG (1988) Environmental ecology of north Queensland caves: or why there are so many troglobites in Australia. In: Pearson L (ed) 17th biennial conference, Australian Speleological Federation Tropicon Conference, Lake Tinaroo, Far North Queensland 27–31 Dec. 1988. Cairns, Australian Speological Federation, pp 76–84

    Google Scholar 

  • Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77

    Article  PubMed  Google Scholar 

  • Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pac Sci 44:207–218

    Google Scholar 

  • Humphreys WF (1989) The status of relict cave fauna of Cape Range, Western Australia, especially the Schizomida. Report to the Australian National Parks and Wildlife Service, Canberra, 104 pp

    Google Scholar 

  • Humphreys WF (1991) Experimental re-establishment of pulse-driven populations in a terrestrial troglobite community. J Anim Ecol 60:609–623

    Article  Google Scholar 

  • Humphreys WF (2000a) Relict faunas and their derivation. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, Subterranean ecosystems, vol 30. Amsterdam, Elsevier, pp 417–432

    Google Scholar 

  • Humphreys WF (2000b) Karst wetlands biodiversity and continuity through major climatic change – an example from arid tropical Western Australia. In: Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation, vol 1. Backhuys, Leiden, pp 227–258

    Google Scholar 

  • Humphreys WF (2000c) First in, last out: should aquifer ecosystems be at the vanguard of remediation assessment? In: Johnston CD (ed) Contaminated site remediation: from source zones to ecosystems, vol 1. Wembley, Western Australia, Centre for Groundwater Studies, pp 275–282

    Google Scholar 

  • Humphreys WF (2001) Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Rec West Aust Mus Suppl 64:63–83

    Article  Google Scholar 

  • Humphreys WF (2006) Aquifers: the ultimate groundwater dependent ecosystems. Aust J Bot 54:115–132

    Article  Google Scholar 

  • Humphreys WF (2008) Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebr Syst 22:85–101

    Article  Google Scholar 

  • Humphreys WF (2009) Hydrogeology and groundwater ecology: does each inform the other? Hydrgeol J 17:5–21

    Article  CAS  Google Scholar 

  • Humphreys WF (2012) Diversity patterns in Australia. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 203–219

    Chapter  Google Scholar 

  • Humphreys WF (2014) Subterranean fauna of Christmas Island: habitats and salient features. Raffles Bull Zool Suppl 30:29–44

    Google Scholar 

  • Humphreys WF (2017) Australasian subterranean biogeography. In: Ebach MC (ed) Handbook of Australasian biogeography. CRC Press, Boca Raton, pp 269–293

    Google Scholar 

  • Humphreys WF, Adams M, Vine B (1989) The biology of Schizomus vinei (Chelicerata: Schizomida) in the caves of Cape Range, Western Australia. J Zool 217:177–201

    Article  Google Scholar 

  • Humphreys WF, Danielopol DL (2005) Danielopolina (Ostracoda, Thaumatocyprididae) on Christmas Island, Indian Ocean, a sea mount island. Crustaceana 78:1339–1352

    Article  Google Scholar 

  • Humphreys WF, Shear WA (1993) Troglobitic millipedes (Diplopoda: Paradoxosomatidae) from semi-arid Cape Range, Western Australia – systematics and biology. Invertebr Taxon 7:173–195

    Article  Google Scholar 

  • Humphreys WF, Tetu S, Elbourne L et al (2012) Geochemical and microbial diversity of Bundera Sinkhole, an anchialine system in the eastern Indian Ocean. Nat Croat 21(Suppl 1):59–63

    Google Scholar 

  • Hunt GW, Stanley EH (2000) An evaluation of alternative procedures using the Bou-Rouch method for sampling hyporheic invertebrates. Can J Fish Aquat Sci 57:1545–1550

    Article  Google Scholar 

  • Hutchins BT, Tovar RU, Schwartz BF (2013) New records of stygobionts from the Edwards Aquifer of central Texas. Speleobiology Notes 5:14–18

    Google Scholar 

  • Iglikowska A, Boxshall GA (2013) Danielopolina revised: Phylogenetic relationships of the extant genera of the family Thaumatocyprididae (Ostracoda: Myodocopa). Zool Anz 252:469–485

    Article  Google Scholar 

  • Iliffe TM, Bowen C (2001) Scientific cave diving. Mar Technol Soc J 35:36–41

    Article  Google Scholar 

  • Jannasch HW, Wheat CG, Plant JN et al (2004) Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications. Limnol Oceanogr Methods 2:102–113

    Article  Google Scholar 

  • Javidkar M, Cooper SJB, Humphreys WF (2018) Biogeographic history of subterranean isopods from groundwater calcrete islands in Western Australia. Zool Scr 47:206–220

    Article  Google Scholar 

  • Javidkar M, Cooper SJB, King R et al (2015) Molecular phylogenetic analyses reveal a new Southern Hemisphere oniscidean family (Crustacea, Isopoda) with a unique water transport system. Invertebr Syst 29:554–577

    Article  Google Scholar 

  • Juan C, Guzik MT, Jaume D et al (2010) Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol Ecol 19:3865–3880

    Article  PubMed  Google Scholar 

  • Juberthie C (1988) Paleoenvironment and speciation in the cave beetle complex Speonomus delarouzeei (Coleoptera, Bathysciinae). Int J Speleol 17:31–50

    Article  Google Scholar 

  • Juberthie C, Delay B, Bouillon M (1980) Extension du milieu souterrain en zone non calcaire: description d’un nouveau milieu et de son peuplement par les Colèoptéres troglobies. Mem Biospeol 7:19–52

    Google Scholar 

  • Juen A, Traugott M (2005) Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system. Oecologia 142:344–352

    Article  PubMed  Google Scholar 

  • Jugovic T, Praprotnik E, Buzan EV et al (2015) Estimating population size of the cave shrimp Troglocaris anophthalmus (Crustacea, Decapoda, Caridea) using mark-release-recapture data. Anim Biodiv Conserv 38:77–86

    Google Scholar 

  • Jurado-Rivera JA, Pons J, Alvarez F et al (2017) Phylogenetic evidence that both ancient vicariance and dispersal have contributed to the biogeographic patterns of anchialine cave shrimps. Sci Rep 7:2852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karanovic T, Eberhard SM, Perina G et al (2013) Two new subterranean ameirids (Crustacea: Copepoda: Harpacticoida) expose weaknesses in the conservation of short-range endemics threatened by mining developments in Western Australia. Invertebr Syst 27:540–566

    Article  Google Scholar 

  • Karanovic T, Djurakic M, Eberhard SM (2016) Cryptic species or inadequate taxonomy? Implementation of 2D geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa. Syst Biol 65:304–327

    Article  PubMed  Google Scholar 

  • Kaul L, Zlot R, Bosse M (2016) Continuous-time three-dimensional mapping for micro aerial vehicles with a passively actuated rotating laser scanner. J Field Robot 33:103–132

    Article  Google Scholar 

  • King RA, Bradford T, Austin AD et al (2012) Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. J Crustacean Biol 32:465–488

    Article  Google Scholar 

  • Knapp SM, Fong DW (1999) Estimates of population size of Stygobromus emarginatus (Amphipoda: Crangonyctidae) in a headwater stream in Organ Cave, West Virginia. J Cave Karst Stud 6:3–6

    Google Scholar 

  • Koonin EV (2015) Energetics and population genetics at the root of eukaryotic cellular and genomic complexity. Proc Natl Acad Sci USA 112:15777–15778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehn KA, Koehn RD (1988) Mycofloral survey of an artesian community within the Edwards Aquifer of Central Texas. Mycologia 80:646–652

    Article  Google Scholar 

  • Larson HL, Foster R, Humphreys WF et al (2013) A new species of the blind cave gudgeon Milyeringa (Gobioidei, Eleotridae, Butinae) from Barrow Island, Western Australia, with a redescription of M. veritas Whitley. Zootaxa 3616:135–150

    Article  PubMed  Google Scholar 

  • Lategan MJ, Torpy FR, Newby S et al (2012) Fungal diversity of shallow aquifers in southeastern Australia. Geomicrobiol J 29:352–361

    Article  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer, Dordrecht

    Book  Google Scholar 

  • Legendre S, Schoener TW, Clobert J et al (2008) How is extinction risk related to population-size variability over time? A family of models for species with repeated extinction and immigration. Am Nat 172:282–298

    Article  PubMed  Google Scholar 

  • Leys R, Watts CHS, Cooper SJB et al (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834

    PubMed  Google Scholar 

  • Lopez H, Oromí P (2010) A pitfall trap for sampling the mesovoid shallow substratum (MSS) fauna. Speleobiology Notes 2:7–11

    Google Scholar 

  • Luštrik R, Turjak M, Kralj-Fišer S et al (2011) Coexistence of surface and cave amphipods in an ecotone environment (spring area). Contrib Zool 80:133–141

    Google Scholar 

  • Mammola S, Leroy B (2017) Applying species distribution models to caves and other subterranean habitats. Ecography. https://doi.org/10.1111/ecog.03464

    Article  Google Scholar 

  • Martínez del Rio C, Wolf N, Carleton SA et al (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111

    Article  Google Scholar 

  • Michel G, Malard F, Deharveng L et al (2009) Reserve selection for conserving groundwater biodiversity. Freshw Biol 54:861–876

    Article  Google Scholar 

  • Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125

    Article  CAS  Google Scholar 

  • Moracchioli N (2002) Estudo dos Spelaeogriphacea brasileiros, crustaceos Peracarida suterraneos. Thesis, University of Sao Paulo, Brazil

    Google Scholar 

  • Moritsch M, Pakes MJ, Lindberg D (2014) How might sea level change affect arthropod biodiversity in anchialine caves: a comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea). Org Divers Evol 14:225–235

    Article  Google Scholar 

  • Mylroie JE, Jensen JW, Taborosi D et al (2001) Karst features of Guam in terms of a general model of carbonate island karst. J Cave Karst Stud 63:9–22

    Google Scholar 

  • Niederreiter R, Danielopol DL (1991) The use of mini-video cameras for the description of groundwater habitats. Mitt Hydrogr Dienstes Osterr 65(66):85–89

    Google Scholar 

  • Nogoro G, Mermilliod-Blondin F, Francois-Carcaillet F et al (2006) Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshw Biol 51:1458–1473

    Article  Google Scholar 

  • Northup DE (2011) Managing microbial communities in caves. In: van Beynen P (ed) Karst management. Springer, Berlin, pp 225–240

    Chapter  Google Scholar 

  • Ohlemüller R, Anderson BJ, Araujo MB et al (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 23:568–572

    Article  Google Scholar 

  • Page TJ, von Rintelen K, Hughes JM (2007) Phylogenetic and biogeographic relationships of subterranean and surface genera of Australian Atyidae (Crustacea: Decapoda: Caridea) inferred with mitochondrial DNA. Invertebr Syst 21:137–145

    Article  Google Scholar 

  • Page TJ, Humphreys WF, Hughes JM (2008) Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS One 3:e1618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Page TJ, Hughes JM, Real KM et al (2016) Allegory of the cave crustacean: systematic and biogeographic reality of Halosbaena (Peracarida: Thermosbaenacea) sought with molecular data at multiple scales. Mar Biodivers. https://doi.org/10.1007/s12526-016-0565-3

    Article  Google Scholar 

  • Pakes MJ, Mejia-Ortiz LM (2014) Chemosynthetic ectosymbiosis reported in the predatory anchialine cave endemic, Xibalbanus tulumensis (Yager, 1987) (Remipedia). Crustaceana 87:1657–1667

    Article  Google Scholar 

  • Pakes MJ, Weiss AW, Mejia-Ortiz LM (2014) Arthropods host intracellular chemosynthetic symbionts, too: cave study reveals an unusual form of symbiosis. J Crustac Biol 34:334–341

    Article  Google Scholar 

  • Parker LV, Clark CH (2002) Study of five discrete interval-type groundwater sampling devices. Cold Regions Research and Engineering Laboratory technical publication ERDC/CRREL TR-02-12 (51 pp Enineer Research and Development Center, US Army Corps of Engineers)

    Google Scholar 

  • Paula DP, Linard B, Andow DA et al (2014) Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics. Mol Ecol Resour 15:880–892

    Article  CAS  Google Scholar 

  • Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips MJ, Page TJ, de Bruyn M et al (2013) The linking of plate tectonics and evolutionary divergence. Curr Biol 23:R603–R605

    Article  CAS  PubMed  Google Scholar 

  • Pickford M, Eisenmann V, Senut B (1999) Timing of landscape development and calcrete genesis in northern Namaqualand, South Africa. S Afr J Sci 95:357–360

    Google Scholar 

  • Pimm SL, Alibhai S, Bergl R et al (2015) Emerging technologies to conserve biodiversity. Trends Ecol Evol 30:685–696

    Article  PubMed  Google Scholar 

  • Pipan T (2005) Epikarst – a promising habitat. Copepod fauna, its diversity and ecology: a case study from Slovenia (Europe). Ljubljana, ZRC Publishing, Karst Research Institute at ZRC SAZU

    Google Scholar 

  • Pipan T, Culver DC (2012) Convergence and divergence in the subterranean realm: a reassessment. Biol J Linn Soc 107:1–14

    Article  Google Scholar 

  • Plath M, Hauswaldt JS, Moll K et al (2007) Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide. Mol Ecol 16:967–976

    Article  CAS  PubMed  Google Scholar 

  • Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27

    Article  CAS  Google Scholar 

  • Poore GCB, Humphreys WF (1998) First record of Spelaeogriphacea from Australasia: a new genus and species from an aquifer in the arid Pilbara of Western Australia. Crustaceana 71:721–742

    Article  Google Scholar 

  • Poulson TL (2012) Food Sources. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 323–334

    Chapter  Google Scholar 

  • Prosser JI, Bohannan BJM, Curtis TP et al (2007) The role of ecological theory in microbial ecology. Nature 386:384–392

    Google Scholar 

  • Racovitza EG (1907) Essai sur les problèmes biospéologiques. Arch Zool Exp Gen 6:371–488

    Google Scholar 

  • Racovita G (2000) Ice caves in temperate regions. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems of the world 30. Elsevier, Amsterdam, pp 561–568

    Google Scholar 

  • Radajewski S, Ineson P, Parekh NR et al (2000) Stable isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  PubMed  Google Scholar 

  • Reichman OJ, Jones MB, Schildhauer MP (2011) Challenges and opportunities of open data in ecology. Science 331:703–705

    Article  CAS  PubMed  Google Scholar 

  • Rendoš M, Raschmanová N, Kováč L et al (2016) Organic carbon content and temperature as substantial factors affecting diversity and vertical distribution of Collembola on forested scree slopes. Eur J Soil Biol 75:180–187

    Article  Google Scholar 

  • Ribera I, Fresneda J, Bucur R et al (2010) Ancient origin of a Western Mediterranean radiation of subterranean beetles. BMC Evol Biol 10:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ripple WJ, Estes JA, Schmitz OJ et al (2016) What is a Trophic Cascade? Trends Ecol Evol 31:842–849

    Article  PubMed  Google Scholar 

  • Robertson T, Döring M, Gurainick R et al (2014) The GBIF integrated publishing toolkit: facilitating the efficient publishing of biodiversity data in the internet. PLoS One 9:e102623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson WH (2005) Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Robinson CJ, Bohannan BJM, Young VB (2010) From structure to function: the ecology of host-associated microbial communities. Microb Mol Biol R 74:453–476

    Article  CAS  Google Scholar 

  • Romero A, Singh A, McKie A et al (2002) Replacement of the troglomorphic population of Rhamdia quelen (Pisces: Pimelodidae) by an epigean population of the same species in the Cumaca Cave, Trinidad, West Indies. Copeia 2002:938–942

    Article  Google Scholar 

  • Rouch R, Carlier A (1985) Le système karstique du Baget. XIV La communauté des Harpacticides Evolution et comparaison des structures du peuplement épigé à l’entrée et à sortie de l’aquifère. Stygologia 1:71–92

    Google Scholar 

  • Sbordoni V (1982) Advances in speciation of cave animals. In: Barrigozzi C (ed) Mechanisms of speciation. A.R. Liss, New York, pp 219–240

    Google Scholar 

  • Schiödte JC (1849) Specimen faunae-subterraneae. Bidrag til den underjordiske Fauna. Saerskilt aftrykt af det Kgl. Danske Videnskabernes Selskabs Skrifter, 5tc Raekke, naturvidenskabelig og mathematisk Afdeling, 2det Bind. Trykt hos Kgl. Hofbogtrykker Bianco Luno, Kjöbenhavn

    Google Scholar 

  • Šebela S (2011) Expert control and recommendations for management of Postojnska Jama, climatic and biological monitoring. In: Prelovšek M, Zupan Hajna N (eds) Pressures and protection of the underground Karst – cases from Slovenia and Croatia, Slovenia, Karst Research Institute ZRC SAZU

    Google Scholar 

  • Seymour JR, Humphreys WF, Mitchell JG (2007) Stratification of the microbial community inhabiting an anchialine sinkhole. Aquat Microb Ecol 50:11–24

    Article  Google Scholar 

  • Shaw PA, de Vries JJ (1988) Duricrust, groundwater and valley development in the Kalahari of southeast Botswana. J Arid Environ 14:245–254

    Google Scholar 

  • Shaw JLA, Weyrich L, Cooper A (2017) Using environmental (e)DNA sequencing for aquatic biodiversity surveys: a beginners guide. Mar Freshw Res 68:20–33

    Article  CAS  Google Scholar 

  • Shimomura M, Fujita Y (2009) First record of the thermosbaenacean genus Halosbaena from Asia: H. daitoensis sp. nov (Peracarida: Thermosbaenacea: Halosbaenidae) from an anchialine cave of Minamidaito-jima Is., in Okinawa, southern Japan. Zootaxa 1990:55–64

    Google Scholar 

  • Silva MS, Ferreira RL (2016) The first two hotspots of subterranean biodiversity in South America. Subterr Biol 19:1–21

    Article  Google Scholar 

  • Silvertown J (2015) Have ecosystem services been oversold? Trends Ecol Evol 30:641–648

    Article  PubMed  Google Scholar 

  • Simon KS, Benfield EF (2001) Leaf and wood breakdown in cave streams. J North Am Benth Soc 20:550–563

    Article  Google Scholar 

  • Simon KS, Buikema AL (1997) Effects of organic pollution on an Appalachian cave: changes in macroinvertebrate populations and food supplies. Am Midl Nat 138:387–401

    Article  Google Scholar 

  • Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic films in cave streams. Ecology 84:2395–2406

    Article  Google Scholar 

  • Simon KS, Pipan T, Culver DC (2007) A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud 69:279–284

    CAS  Google Scholar 

  • Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563

    Article  Google Scholar 

  • Smith J, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microb Ecol 67:6–20

    Article  CAS  Google Scholar 

  • Smith GB, Eberhard SM, Perina G et al (2012) New species of short range endemic troglobitic silverfish (Zygentoma: Nicoletiidae) from subterranean habitats in Western Australia’s semi-arid Pilbara region. Rec West Aust Mus 27:101–116

    Article  Google Scholar 

  • Smith RJ, Paterson JS, Launer E et al (2016) Stygofauna enhance prokaryotic transport in groundwater ecosystems. Sci Rep 6:32738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneed M, Galloway DL, Cunningham WL (2003) Earthquakes—rattling the earth’s plumbing system. United States Geological Survey. http://pubs.usgs.gov/fs/fs-096-03/pdf/fs-096-03.pdf

  • Sorensen JPR, Maurice L, Edwards FK et al (2013) Using Boreholes as windows into groundwater ecosystems. PLoS One 8:e70264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza-Silva M, Martins RP, Ferreira RL (2011) Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic rain forest. Biodivers Conserv (8):1713–1729

    Article  Google Scholar 

  • Spangler PJ, Barr CB (1995) A new genus and species of stygobiontic dytiscid beetle, Comaldessus stygius (Coleoptera: Dytiscidae: Bidessini) from Comal Springs, Texas. Insecta Mundi 9:301–308

    Google Scholar 

  • Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454

    Article  CAS  Google Scholar 

  • Stieglitz T (2005) Submarine groundwater discharge into the near-shore zone of the Great Barrier Reef, Australia. Mar Pollut Bull 51:51–59

    Article  CAS  PubMed  Google Scholar 

  • Stieglitz T (2016) http://www.ozcoasts.gov.au/geom_geol/case_studies/pdf/SeafloorMappinginGBR.pdf. viewed 28 January 2016

  • Stock JH (1980) Regression model evolution as exemplified by the genus Pseudoniphargus (Amphipoda). Bijdr Dierkd 50:105–141

    Google Scholar 

  • Stone FD (2010) Bayliss Lava Tube and the discovery of a rich cave fauna in tropical Australia. In: Proceedings 14th international symposium on vulcanospeleology, August 2010, Undara, Australia, pp 47–58

    Google Scholar 

  • Stone FD, Howarth FG, Hoch H et al (2012) Root communities in lava tubes. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 658–664

    Chapter  Google Scholar 

  • Subterranean Ecology Pty Ltd (2011) Yeelirrie Subterranean Fauna Survey. Proposed Yeelirrie Development. Report prepared for BHP Billiton Yeelirrie Development Company Pty Ltd. Western Australia, Subterranean Ecology Pty Ltd, Stirling

    Google Scholar 

  • Suzuki MT, Taylor LT, Delong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 59-nuclease assays. Appl Environ Microbiol 66:4605–4614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by Quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SJ, Niemiller ML (2016) Biogeography and conservation assessment of Bactrurus groundwater amphipods (Crangonyctidae) in the central and eastern United States. Subterr Biol 17:1–29

    Article  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics – a guide from sampling to data analysis. Microb Inform Exp 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18

    Article  Google Scholar 

  • Tierney SM, Friedrich M, Humphreys WF et al (2016) Consequences of evolutionary transitions in changing photic environments. Aust Entomol 56:23–46

    Article  Google Scholar 

  • Trajano E, Bichuette ME (2008) Population ecology of cave armoured catfish, Ancistrus cryptophthalmus Reis 1987, from central Brazil (Siluriformes: Loricariidae). Ecol Freshw Fish 16:105–115

    Article  Google Scholar 

  • Trinh DA, Trinh QH, Fernández-Cortés A et al (2018) First assessment on the air CO2 dynamic in the show caves of tropical karst, Vietnam. Int J Speleol 47:93–112

    Article  Google Scholar 

  • Trontelj P (2007) The age of subterranean crayfish species. A comment on Buhay Crandall (2005): subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes. Mol Ecol 16:2841–2843

    Article  PubMed  Google Scholar 

  • Trontelj P, Douady CJ, Fišer C et al (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744

    Article  CAS  Google Scholar 

  • Turner CR, Uy KL, Everhart RC (2015) Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol Conserv 183:93–102

    Article  Google Scholar 

  • Vanderwolf KJ, Malloch D, McAlpine DF et al (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42:77–96

    Article  Google Scholar 

  • Vernarski MP, Huryn AD, Benstead JP (2012) Re-examining extreme longevity of the cave crayfish Orconectes australis using new mark–recapture data: a lesson on the limitations of iterative size-at-age models. Freshw Biol 57:1471–1481

    Article  Google Scholar 

  • Vié C, Hilton-Taylor C, Stuart SN (eds) (2008) The 2008 review of The IUCN Red List of threatened species. IUCN, Gland

    Google Scholar 

  • Vittori M, Kostanjšek R, Žnidaršič N et al (2012) Molting and cuticle deposition in the subterranean trichoniscid Titanethes albus (Crustacea, Isopoda). ZooKeys 176:23–38

    Article  Google Scholar 

  • Vizcaíno JA, Deutsch EW, Wang R et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner HP (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida). Zool Verh 291:1–338

    Google Scholar 

  • Wagner K, Bengtsson MM, Besemer K et al (2014) Functional and structural responses of hyporheic biofilms to varying sources of dissolved organic matter. Appl Environ Microbiol 80:6004–6012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watts CHS, Humphreys WF (2009) Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from underground waters in Australia. T Roy Soc South Aust 133:62–107

    Google Scholar 

  • Weaver J, Conrad J, Eskes S (1993) Valley calcrete: another Karoo groundwater exploration target. In: Proceedings of the groundwater ’93 conference: Africa needs groundwater. University of Witwatersrand, Johannesburg. Groundwater Division of the Geological Society of South Africa and Borehole Water Association of Southern Africa

    Google Scholar 

  • Weese DA, Fujita Y, Santos SR (2016) Looking for needles in a haystack: molecular identification of anchialine crustacean larvae (Decapoda: Caridea) from the Shiokawa Spring, Okinawa Island, Ryukyu Islands, Japan. J Crustacean Biol 36:61–67

    Google Scholar 

  • Welch JLM, Rossetti BJ, Rieken CW et al (2016) Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA 113:E791–E800

    Article  CAS  Google Scholar 

  • Wheat CG, Jannasch HW, Plant JN et al (2000) Continuous sampling of hydrothermal fluids from the Loihi Seamount after the 1996 event. J Geophys Res 105:19353–19368

    Article  CAS  Google Scholar 

  • Whitehead MR, Peakall R (2012) Microdot technology for individual marking of small arthropods. Agr Forest Entomol 14:171–175

    Article  Google Scholar 

  • Wicks C, Humphreys WF (2011) Preface to special volume Anchialine ecosystems: reflections and prospects. Hydrobiologia 677:1–2

    Article  Google Scholar 

  • Wigley TML, Brown MC (1976) The physics of caves. In: Ford TD, Cullingford CHD (eds) The science of speleology. Academic, San Diego, pp 329–344

    Google Scholar 

  • Wilkens H, Strecker U (2017) Evolution in the dark: Darwin’s loss without selection. Springer, Berlin

    Book  Google Scholar 

  • Wilson GDF (2008) Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods to India and New Zealand. Invertebr Syst 22:301–310

    Article  Google Scholar 

  • Zagmajster M, Eme D, Fišer C et al (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145

    Article  Google Scholar 

  • Zakšek V, Sket B, Gottstein S et al (2009) The limits of cryptic diversity in groundwater: phylogeography of the cave shrimp Troglocaris anophthalmus (Crustacea: Decapoda: Atyidae). Mol Ecol 18:931–946

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li S (2014) A spider species complex revealed high cryptic diversity in South China caves. Mol Phylogenet Evol 79:353–358

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Brian Vine who first showed me what became Draculoides vinei (Harvey), took me caving in Cape Range and changed forever my research focus. Darren Brook of Exmouth, who has been a constant caving companion. Mark Adams and Steve Cooper of the South Australian Museum and Adelaide University and the succession of researchers through their labs. Julianne Waldock of the Western Australian Museum who has been there throughout. To each and everyone, my appreciation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Humphreys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Humphreys, W.F. (2018). Where Angels Fear to Tread: Developments in Cave Ecology. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_24

Download citation

Publish with us

Policies and ethics