Skip to main content

Homogeneous Climate Regions Using Learning Algorithms

  • Conference paper
  • First Online:
Renewable Energy: Forecasting and Risk Management (FRM 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 254))

Included in the following conference series:

  • 944 Accesses

Abstract

Climate analysis is extremely useful to understand better the differences of electricity consumption within the French territory and to help electricity consumption forecasts. Using a large historical data base of 14 years of meteorological observations, this work aims to study a segmentation of the French territory based on functional time series of temperature and wind. In a first step, 14 clustering instances, one for each year, have been performed using, for each instance, one year of data. Each year, the clustering exhibits several homogeneous and spatially connected regions. Benefits of this approach let to study the stability of the previous regions over the years and to highlight the inter-annual variability of the French climate. A final aggregation of all clustering instances shows a segmentation map in easily interpretable, geographically connected climate zones over the last years. Especially, we observe that the number of clusters remains extremely stable through the years. Exhibiting stable homogeneous regions bring then some valuable knowledge for potentially installing new wind or solar farms on the French territory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Réseau de Transport d’Electricité.

  2. 2.

    Laboratoire de Probabilités, Statistique, Modélisation.

References

  1. A. Antoniadis, X. Brossat, J. Cugliari, J.-M. Poggi, Une approche fonctionnelle pour la prevision non-parametrique de la consommation d’electricite. Journal de la Société Française de Statistique 155(2), 202–219 (2014)

    MathSciNet  MATH  Google Scholar 

  2. M. Bador, P. Naveau, E. Gilleland, M. Castellà, T. Arivelo, Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over europe. Weather Clim. Extrem. 9, 17–24 (2015)

    Article  Google Scholar 

  3. J.D. Banfield, A.E. Raftery, Model-based Gaussian and non-Gaussian clustering. Biometrics 803–821 (1993)

    Article  MathSciNet  Google Scholar 

  4. T. Caliński, J. Harabasz, A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  5. J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning. Springer Series in Statistics, vol. 1 (Springer, New York, 2001)

    Google Scholar 

  6. M. Girolami, Mercer kernel based clustering in feature space. IEEE Trans. Neural Netw. (2001)

    Google Scholar 

  7. J.A. Hartigan, M.A. Wong, Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  8. A.K. Jain, M. Narasimha Murty, P.J. Flynn, Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  9. G.M. James, T.J. Hastie, C.A. Sugar, Principal component models for sparse functional data. Biometrika 87(3), 587–602 (2000)

    Article  MathSciNet  Google Scholar 

  10. W.J. Krzanowski, Y.T. Lai, A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics 23–34 (1988)

    Article  MathSciNet  Google Scholar 

  11. J. Mairal, F. Bach, J. Ponce, Sparse modeling for image and vision processing. Found. Trends® Comput. Graph. Vis. 8(2–3), 85–283 (2014)

    Article  Google Scholar 

  12. S. Mika, B. Scholkopf, A. Smola, K.-R. Müller, M. Scholz, G. Ratsch, Kernel PCA and de-noising in feature spaces, in Advances in Neural Information Processing Systems 11 (MIT Press, Cambridge, 1999), pp. 536–542

    Google Scholar 

  13. M. Mougeot, D. Picard, V. Lefieux, L. Maillard-Teyssier, Forecasting intra day load curves using sparse functional regression, in Modeling and Stochastic Learning for Forecasting in High Dimensions (Springer, Berlin, 2015), pp. 161–181

    Chapter  Google Scholar 

  14. K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012)

    Google Scholar 

  15. J. Najac, J. Boé, L. Terray, A multi-model ensemble approach for assessment of climate change impact on surface winds in france. Clim. Dyn. 32(5), 615–634 (2009)

    Article  Google Scholar 

  16. A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering. Adv. Neural Inf. Process. Syst. 2, 849–856 (2002)

    Google Scholar 

  17. C. Radhakrishna Rao, The use and interpretation of principal component analysis in applied research. Sankhyā Indian J. Stat. Ser. A (1961–2002) 26(4), 329–358 (1964)

    MathSciNet  MATH  Google Scholar 

  18. J.O. Ramsay, B.W. Silverman, Applied Functional Data Analysis: Methods and Case Studies, vol. 77 (Springer, New York, 2002)

    Book  Google Scholar 

  19. J.O. Ramsay, B.W. Silverman, Springer Series in Statistics (Springer, Berlin, 2005)

    Google Scholar 

  20. J. Rissanen, Minimum Description Length Principle (Wiley Online Library, London, 1985)

    Google Scholar 

  21. P.J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  22. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, Cambridge, 2002)

    Google Scholar 

  23. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  24. M. Stefanon, F. D’Andrea, P. Drobinski, Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 7(1), 014023 (2012)

    Article  Google Scholar 

  25. Syndicat des Énergies Renouvelables, Panorama de l’électricité renouvelable en 2015. Technical report, Syndicat des Énergies Renouvelables, 2015

    Google Scholar 

  26. R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)

    Article  MathSciNet  Google Scholar 

  27. P.-J. Trombe, P. Pinson, H. Madsen, Automatic classification of offshore wind regimes with weather radar observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(1), 116–125 (2014)

    Article  Google Scholar 

  28. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995)

    Book  Google Scholar 

  29. U. Von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  30. M. Vrac, Modélisions statistiques à différentes échelles climatiques et environnementales. HDR, Université Orsay, 2012

    Google Scholar 

  31. M. Vrac, A. Chédin, E. Diday, Clustering a global field of atmospheric profiles by mixture decomposition of copulas. J. Atmos. Ocean. Technol. 22(10), 1445–1459 (2005)

    Article  Google Scholar 

  32. J.H. Ward Jr., Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  33. D. Yan, A. Chen, M.I. Jordan, Cluster forests. Comput. Stat. Data Anal. 66, 178–192 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank RTE for the financial support through one industrial contract, LPSM for hosting our researches and Agence Nationale de la Recherche (ANR-14-CE05-0028) through the FOREWER project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Mougeot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mougeot, M., Picard, D., Lefieux, V., Marchand, M. (2018). Homogeneous Climate Regions Using Learning Algorithms. In: Drobinski, P., Mougeot, M., Picard, D., Plougonven, R., Tankov, P. (eds) Renewable Energy: Forecasting and Risk Management. FRM 2017. Springer Proceedings in Mathematics & Statistics, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-319-99052-1_5

Download citation

Publish with us

Policies and ethics