Skip to main content

Computational Examination of Synaptic Plasticity and Metaplasticity in Hippocampal Dentate Granule Neurons

  • Chapter
  • First Online:
Hippocampal Microcircuits
  • The original version of this chapter was revised: two of the chapter authors were inadvertently missed in the authors list which has been added now. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-99103-0_27

Abstract

Long-term potentiation (LTP) and long-term depression (LTD) are two forms of long-lasting synaptic plasticity. To protect synaptic weights from extreme increase or decrease, neurons need to regulate their activities; this phenomenon is called homeostatic plasticity. The induction of homosynaptic plasticity by high-frequency stimulation (HFS) increases the strength of synaptic weights dramatically which makes a neuron loses balance. However, heterosynaptic plasticity keeps the synaptic weights away from the extreme increase and brings them into a stable range. Therefore, neurons need both homosynaptic and heterosynaptic plasticity to regulate their synaptic weights. In most previous studies of spike-timing-dependent plasticity (STDP) models, postsynaptic spikes are treated as all-or-none events; however, in this study, we calculate the voltage of the postsynaptic spikes instead of counting the number of spikes. Further, we incorporate a modified model of metaplasticity based on the voltage of the spike rather than the spike count. To model synaptic plasticity of dentate granule cells, we used computational simulations and employed STDP rules accompanied with metaplasticity model and noisy spontaneous activity to address these questions; firstly, could our plasticity and metaplasticity models produce homosynaptic LTP in one pathway and heterosynaptic LTD in the neighbouring pathway? Secondly, does the magnitude of spontaneous activity after stimulation determine the level of heterosynaptic LTD? Thirdly, when two stimulations with the same frequency are applied to the same synapse at different time interval, will both stimulations produce the same level of synaptic plasticity? Our result shows that employing STDP and metaplasticity rules based on the voltage of the spikes accompanied with noisy spontaneous activity could replicate homosynaptic LTP in the stimulated pathway and heterosynaptic LTD in the non-stimulated neighbouring pathway of the dentate granule cell, as shown experimentally (Abraham WC, Mason-Parker SE, Bear MF, Webb S, Tate WP, Proc Natl Acad Sci 98(19):10924–10929, 2001; Abraham WC, Logan B, Wolff A, Benuskova L, J Neurophysiol 98(2):1048–1051, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 03 August 2019

    In the original version of this chapter, two of the chapter authors were inadvertently missed to be added in the authors list. The authors’ names Jörg Frauendiener, and Lubica Benuskova have now been added in chapter 20.

References

  • Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9(5):387–387

    Article  CAS  PubMed  Google Scholar 

  • Abraham W, Goddard GV (1983) Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature (London) 305:717–719

    Article  CAS  Google Scholar 

  • Abraham WC, Bliss TVP, Goddard GV (1985) International review of neurobiology. J Physiol 363:335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham WC, Mason-Parker SE, Bear MF, Webb S, Tate WP (2001) Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP. Proc Natl Acad Sci 98(19):10924–10929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham WC, Logan B, Wolff A, Benuskova L (2007) Heterosynaptic LTD in the dentate gyrus of anesthetized rat requires homosynaptic activity. J Neurophysiol 98(2):1048–1051

    Article  PubMed  Google Scholar 

  • Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippocampus book. Oxford University Press, New York

    Book  Google Scholar 

  • Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6(3):215–235

    Article  CAS  PubMed  Google Scholar 

  • Barker JM, Boonstra R, Wojtowicz JM (2011) From pattern to purpose: how comparative studies contribute to understanding the function of adult neurogenesis. Eur J Neurosci 34(6):963–977

    Article  PubMed  Google Scholar 

  • Bear MF, Connors BW, Paradiso MA (2007). Neuroscience, Volume 2. Lippincott Williams & Wilkins

    Google Scholar 

  • Benuskova L, Abraham WC (2007) STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity. J Comput Neurosci 22(2):129–133

    Article  PubMed  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss TV, Cooke SF (2011) Long-term potentiation and long-term depression: a clinical perspective. Clinics 66:3–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowden JB, Abraham WC, Harris KM (2012) Differential effects of strain, circadian cycle, and stimulation pattern on LTP and concurrent LTD in the dentate gyrus of freely moving rats. Hippocampus 22(6):1363–1370

    Article  PubMed  Google Scholar 

  • Bush D, Philippides A, Husbands P, O’Shea M (2010) Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network. Neural Comput 22(8):2059–2085

    Article  PubMed  Google Scholar 

  • Chistiakova M, Bannon NM, Bazhenov M, Volgushev M (2014) Heterosynaptic plasticity multiple mechanisms and multiple roles. Neuroscientist, 1073858414529829

    Google Scholar 

  • Christie BR, Abraham WC (1992) Priming of associative long-term depression by theta frequency synaptic activity. Neuron 8:79–84

    Article  Google Scholar 

  • Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13(3):344–352

    Article  CAS  PubMed  Google Scholar 

  • Cohen SD, Hindmarsh AC (1994) CVODE user guide. Technical report, Technical Report UCRL-MA-118618, LLNL

    Google Scholar 

  • Cooper LN, Intrator N, Blais BS, Shouval HZ (2004) Theory of cortical plasticity, volume 150. World Scientific Singapore

    Google Scholar 

  • DAngelo E, Solinas S, Garrido J, Casellato C, Pedrocchi A, Mapelli J, Gandol D, Prestori F (2013) Realistic modeling of neurons and networks: towards brain simulation. Funct Neurol 28(3):153

    Google Scholar 

  • Desmond NL, Levy WB (1982) A quantitative anatomical study of the granule cell dendritic fields of the rat dentate gyrus using a novel probabilistic method. J Comp Neurol 212:131–145

    Article  CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–62

    CAS  PubMed  Google Scholar 

  • Douglas RM, Goddard GV (1975) Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res 86(2):205–215

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience. Springer

    Google Scholar 

  • Fellous J-M, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122(3):811–829

    Article  CAS  PubMed  Google Scholar 

  • Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21(2):269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foy M (2001) Long-term depression (Hippocampus)

    Chapter  Google Scholar 

  • Gloveli T, Schmitz D, Empson RM, Heinemann U (1997) Frequency dependent information flow from the entorhinal cortex to the hippocampus. J Neurophysiol 78(6):3444–3449

    Article  CAS  PubMed  Google Scholar 

  • Herz AV, Gollisch T, Machens CK, Jaeger D (2006) Modeling single neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796):80–85

    Article  CAS  PubMed  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179–1209

    Article  CAS  PubMed  Google Scholar 

  • Hines M, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7(2):123–135

    Article  CAS  PubMed  Google Scholar 

  • Holland LL, Wagner JJ (1998) Primed facilitation of homosynaptic long-term depression and depotentiation in rat Hippocampus. J Neurosci 18:887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  PubMed  Google Scholar 

  • Izhikevich EM, Desai NS (2003) Relating stdp to bcm. Neural Comput 15(7):1511–1523

    Article  PubMed  Google Scholar 

  • Jedlicka P (2002) Synaptic plasticity, metaplasticity and BCM theory. Bratisl Lek Listy 103(4/5):137–143

    CAS  PubMed  Google Scholar 

  • Kopanitsa MV, Afinowi NO, Grant SG (2006) Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays. BMC Neurosci 7:61. PMID 16942609. https://doi.org/10.1186/1471-2202-7-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kullmann DM, Lamsa KP (2007) Long-term synaptic plasticity in hippocampal interneurons. Nat Rev Neurosci 8(9):687–699

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-W, Yang H-W, Wang H-J, Gong C-L, Chiu T-H, Min M-Y (2006) Spike-timing-dependent plasticity at resting and conditioned lateral perforant path synapses on granule cells in the dentate gyrus: different roles of N-methyld-aspartate and group I metabotropic glutamate receptors. Eur J Neurosci 23(9):2362–2374

    Article  PubMed  Google Scholar 

  • Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78(4):535–538

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Lu¨bke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Barnes CA (1977) J Comp Neurol 175:439–454

    Article  CAS  PubMed  Google Scholar 

  • Morrison D (2012) Metaplasticity: A new frontier in the neural representation of memory. University of British Columbia’s Undergraduate Journal of Psychology, 1

    Google Scholar 

  • Obien ME, Deligkaris K, Bullmann T, Bakkum DJ, Frey U (2015) Revealing neuronal function through microelectrode array-recordings. Front Neurosci. https://doi.org/10.3389/fnins.2014.00423

  • Rao S, Raju T (2004) Recording of extracellular field potential in the hippocampal slice. In: National Institute of Mental Health and Neuro Sciences, pp 115–118

    Google Scholar 

  • Rivka sh G (2012) The axon guide electrophysiology and biophysics laboratory techniques (book)

    Google Scholar 

  • Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93(1):437–453

    Article  PubMed  Google Scholar 

  • Scharfman HE (2011) The dentate gyrus: a comprehensive guide to structure, function, and clinical implications: a comprehensive guide to structure, function, and clinical implications, Volume 163. Elsevier

    Google Scholar 

  • Shirrafiardekani A, Benuskova L, Frauendiener J (2017) A voltage based metaplasticity rule applied to the model hippocampal granule cell accounts for homeostatic heterosynaptic plasticity. J Neural Plast 5018563.vl (Under Review)

    Google Scholar 

  • Sjöström PJ, Gerstner W (2010) Spike-timing dependent plasticity. Scholarpedia J 5:1362. https://doi.org/10.4249/scholarpedia.1362

    Article  Google Scholar 

  • Sjöström J, Gerstner W (2011) Spike-timing dependent plasticity. Front Synaptic Neurosci 35–44

    Google Scholar 

  • Snyder J, Kee N, Wojtowicz J (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol 85(6):2423–2431

    Article  CAS  PubMed  Google Scholar 

  • Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of computational modelling in neuroscience. Cambridge University Press

    Book  Google Scholar 

  • Tejada J, Garcia-Cairasco N, Roque AC (2014) Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus. PLoS Comput Biol 10(5):e1003601. https://doi.org/10.1371/journal.pcbi.1003601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulinski PS (1999) Neural mechanisms underlying the analysis of moving visual stimuli. In: Models of cortical circuits. Springer, 283–399

    Google Scholar 

  • Van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20(23):8812–8821

    Article  PubMed  PubMed Central  Google Scholar 

  • Watt AJ, Desai NS (2010). Homeostatic plasticity and STDP: keeping a neurons cool in a fluctuating world. Spike-timing dependent plasticity,

    Google Scholar 

  • Wible CG (2013) Hippocampal physiology, structure and function and the neuroscience of schizophrenia: a unified account of declarative memory deficits, working memory deficits and schizophrenic symptoms. Behav Sci 3(2):298–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Yger P, Gilson M (2015) Models of metaplasticity: a review of concepts. Front Comput Neurosci 9:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuen GL, Durand D (1991) Reconstruction of hippocampal granule cell electro-physiology by computer simulation. Neuroscience 41:411–423

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Schwabe L, Plotkin JL (2014) Location-dependent dendritic computation in a modeled striatal projection neuron. In: International conference on artificial neural networks. Springer, 741–748

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Shirrafiardekani .

Editor information

Editors and Affiliations

Appendix

Appendix

Integration Method of Crank-Nicolson

The Crank-Nicolson method or the central difference is a finite difference method with the accuracy of the second order in time, which was developed by Crank and Nicolson. The error oscillation of this method decays with time; therefore the solution is stable and safe for most solutions. The Crank-Nicolson method is a combination of the backward and forward Euler methods. It is equivalent to advancing by one-half step using backward Euler and then advancing by one-half step using forward Euler. The global error for this method is proportional to the square of the step size (Hines and Carnevale 1997).

By considering the forward Euler method as:

$$ \frac{y_{n+1}-{y}_n}{\Delta t}=f\left({t}_n,{y}_n\right) $$
(A.1)

and the backward Euler method as:

$$ \frac{y_{n+1}-{y}_n}{\Delta t}=f\left({t}_{n+1},{y}_{n+1}\right) $$
(A.2)

Therefor the Crank-Nicolson method can be calculated as:

$$ \frac{y_{n+1}-{y}_n}{\Delta t}=\frac{f\left({t}_n,{y}_n\right)+f\left({t}_{n+1},{y}_{n+1}\right)}{2} $$
(A.3)

The RC Circuit

With injecting the current into the circuit, the membrane potential changes. Therefore, Kirchhoff’s current law indicates that the total current entering into the junction is equal to the total current leaving the junction. The summation of the membrane current Ia and injected current I e is equal to the summation of the capacitance current I c a and ionic current I i a. a is the curved surface area of the cylinder (Sterratt et al. 2011).

$$ Ia+{I}_e={I}_ca+{I}_ia $$
(A.4)

The following equation shows the ionic current flows through the resistor:

$$ {I}_ia=\frac{V-{E}_m}{\frac{R_m}{a}} $$
(A.5)

where \( \frac{R_m}{a} \) is the membrane resistance and E m is the equilibrium potential of the membrane. According to the following equation, the capacitive current is proportional to the rate of change of the voltage:

$$ {I}_ca={C}_ma\frac{\mathrm{d}V}{\mathrm{d}t} $$
(A.6)

The membrane capacitance is C m a. If we suppose that the circuit is isolated, then Ia is zero. With substituting the I i and I c in Eq. 4, we have:

$$ {C}_m\frac{\mathrm{d}V}{\mathrm{d}t}=\frac{E_m+V}{R_m}+\frac{I_e}{a} $$
(A.7)

This is the first-order ordinary differential equation (ODE) for the membrane potential V with units from Table 5 (Sterratt et al. 2011).

Table 5 Passive quantities

Multi-compartmental Models

Multi-compartmental models are useful techniques to model dendritic trees of the neuron. In this model, dendritic tree breaks up into the small compartment. With considering each compartment as a cylinder with a length l and a diameter d, the surface area will be equal to a = πdl (Ermentrout and Terman 2010). Current flows through each compartment into the membrane capacitance and the membrane resistance. It also flows through intracellular and extracellular of the membrane and can be modelled by axial resistances. The extracellular resistance can be considered zero. R a is the specific axial resistance with units Ω cm, and the axial resistance of the cylindrical compartment is 4R a l/πd 2 in which πd 2/4 is a cross-sectional area. j is the number of compartment, and V j is the membrane potential in the j the compartment, and I e,j is the injected current into the compartment j. The membrane current I j is equal to the sum of the leftwards and rightwards axial currents. Therefore, according to Ohm’s law:

$$ {I}_ja=\frac{V_{j+1}-{V}_j}{\raisebox{1ex}{$4{R}_al$}\!\left/ \!\raisebox{-1ex}{$\pi {d}^2$}\right.}+\frac{V_{j-1}-{V}_j}{\raisebox{1ex}{$4{R}_al$}\!\left/ \!\raisebox{-1ex}{$\pi {d}^2$}\right.} $$
(A.8)

where I j a is a current, and according Kirchhoff’s current law:

$$ {I}_{c,j}a+{I}_{i,j}a={I}_ja+{I}_{e,j}\vspace*{-3pt} $$
(A.9)
$$ {I}_{c,j}a+{I}_{i,j}a=\frac{V_{j+1}-{V}_j}{\raisebox{1ex}{$4{R}_al$}\!\left/ \!\raisebox{-1ex}{$\pi {d}^2$}\right.}+\frac{V_{j-1}-{V}_j}{\raisebox{1ex}{$4{R}_al$}\!\left/ \!\raisebox{-1ex}{$\pi {d}^2$}\right.}+{I}_{e,j} $$
(A.10)

The following equations are similar to Eq. 10 for a patch of membrane with two extra equations which describe the flowing current through two compartments j − 1 and j + 1:

$$ \pi dl{C}_m\frac{\mathrm{d}{V}_j}{\mathrm{d}t}=\frac{E_m-{V}_j}{\raisebox{1ex}{${R}_m$}\!\left/ \!\raisebox{-1ex}{$\pi dl$}\right.}+\frac{V_{j+1}-{V}_j}{\raisebox{1ex}{$4{R}_al$}\!\left/ \!\raisebox{-1ex}{$\pi {d}^2$}\right.}+\frac{V_{j-1}-{V}_j}{\raisebox{1ex}{$4{R}_al$}\!\left/ \!\raisebox{-1ex}{$\pi {d}^2$}\right.}+{I}_{e,j} $$
(A.11)

Where a is the surface area of the cylinder.

$$ {C}_m\frac{\mathrm{d}{V}_j}{\mathrm{d}t}=\frac{E_m-{V}_j}{R_m}+\frac{d}{4{R}_a}\left(\frac{V_{j+1}-{V}_j}{l^2}+\frac{V_{j-1}-{V}_j}{l^2}\right)+\frac{I_{e,j}}{\pi dl} $$
(A.12)

This equation is the fundamental equation for the compartmental model (Sterratt etal. 2011).

Rate Functions for Nine-Compartmental Models of GC

Activation and inactivation gates at compartment i are formulated as:

$$ \frac{\mathrm{d}{z}_i}{\mathrm{d}t}={\alpha}_{{z_i}_i}-\left({\alpha}_{z_i}+{\beta}_{z_i}\right){z}_i\vspace*{-4pt} $$
(A.13)
$$ \left({z}_i:{m}_i,{h}_i,{n}_{f,i},{n}_{s,i},{k}_i,{l}_i,{a}_i,{b}_i,{c}_i,{d}_i,{e}_i,{r}_i,{q}_i\ \right) $$

variable z i represents m i, h i, n f, i, n s, i, k i, l i, a i, b i, c i, d i, e i, r i and q i ion-gating variables. Rate functions at compartment i determine the transition between open and closed states of the ion channels. The following equations show the rate functions at compartment i (Aradi and Holmes 1999):

$$ {\alpha}_{m,i}(V)=\frac{-0.3\left({V}_i-25\right)}{\left[\exp \left(\frac{V_i-25}{-5}\right)-1\right]} $$
(A.14)
$$ {\beta}_{m,i}(V)=\frac{0.3\left({V}_i-53\right)}{\left[\exp \left(\frac{V_i-53}{5}\right)-1\right]} $$
(A.15)
$$ {\alpha}_{h,i}(V)=\frac{0.23}{\exp \left(\frac{V_i-3}{20}\right)} $$
(A.16)
$$ {\beta}_{h,i}(V)=\frac{3.33}{\left[\exp \left(\frac{V_i-55.5}{-10}\right)+1\right]} $$
(A.17)
$$ {\alpha}_{n_f,i}(V)=\frac{-0.07\left({V}_i-47\right)}{\left[\exp \left(\frac{V_i-47}{-6}\right)-1\right]} $$
(A.18)
$$ {\beta}_{n_f,i}(V)=\frac{0.264}{\exp \left(\frac{V_i-22}{40}\right)} $$
(A.19)
$$ {\alpha}_{n_s,i}(V)=\frac{-0.028\left({V}_i-35\right)}{\left[\exp \left(\frac{V_i-35}{-6}\right)-1\right]} $$
(A.20)
$$ {\beta}_{n_s,i}(V)=\frac{0.1056}{\exp \left(\frac{V_i-10}{40}\right)} $$
(A.21)
$$ {\alpha}_{k,i}(V)=\frac{-0.05\left({V}_i+25\right)}{\left[\exp \left(\frac{V_i+25}{-5}\right)-1\right]} $$
(A.22)
$$ {\beta}_{k,i}(V)=\frac{0.1\left({V}_i+15\right)}{\left[\exp \left(\frac{V_i+15}{8}\right)-1\right]} $$
(A.23)
$$ {\alpha}_{l,i}(V)=\frac{0.00015}{\exp \left(\frac{V_i+13}{15}\right)} $$
(A.24)
$$ {\beta}_{l,i}(V)=\frac{0.06}{\left[\exp \left(\frac{V_i+68}{-12}\right)+1\right]} $$
(A.25)
$$ {\alpha}_{a,i}(V)=\frac{0.2\left(19.26-{V}_i\right)}{\left[\exp \left(\frac{19.26-{V}_i}{10}\right)-1\right]} $$
(A.26)
$$ {\beta}_{a,i}(V)=0.009\ \exp \left(\frac{-{V}_i}{22.03}\right) $$
(A.27)
$$ {\alpha}_{b,i}(V)={10}^{-6}\exp \left(\frac{-{V}_i}{16.26}\right) $$
(A.28)
$$ {\beta}_{b,i}(V)=\frac{1}{\left[\exp \left(\frac{29.76-{V}_i}{10}\right)+1\right]} $$
(A.29)
$$ {\alpha}_{c,i}(V)=\frac{0.19\left(19.88-{V}_i\right)}{\left[\exp \left(\frac{19.88-V}{10}\right)-1\right]} $$
(A.30)
$$ {\beta}_{c,i}(V)=0.046\ \exp \left(\frac{-{V}_i}{20.76}\right) $$
(A.31)
$$ {\alpha}_{d,i}(V)=1.6\times {10}^{-4}\exp \left(\frac{-{V}_i}{148.4}\right) $$
(A.32)
$$ {\beta}_{d,i}(V)=\frac{1}{\left[\exp \left(\frac{39-{V}_i}{10}\right)+1\right]} $$
(A.33)
$$ {\alpha}_{e,i}(V)=\frac{15.69\ \left(81.5-{V}_i\right)}{\left[\exp \left(\frac{81.5-{V}_i}{10}\right)-1\right]} $$
(A.34)
$$ {\beta}_{e,i}(V)=0.29\ \exp \left(\frac{-{V}_i}{10.86}\right) $$
(A.35)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirrafiardekani, A., Frauendiener, J., Moustafa, A.A., Benuskova, L. (2018). Computational Examination of Synaptic Plasticity and Metaplasticity in Hippocampal Dentate Granule Neurons. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-99103-0_20

Download citation

Publish with us

Policies and ethics