Skip to main content

The Multiplicity Function

  • Chapter
  • First Online:
Generalized Multiresolution Analyses

Part of the book series: Applied and Numerical Harmonic Analysis ((LN-ANHA))

  • 492 Accesses

Abstract

Since every orthonormal wavelet, and every semiorthogonal Parseval wavelet, has an associated GMRA, each also has an associated multiplicity function. In this chapter, we explore the use of the multiplicity function as a tool to analyze and build wavelets, and see how it is related to classical tools such as the dimension function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auscher, P.: Solution of two problems on wavelets. J. Geom. Anal. 5 181–236 (1995)

    Article  MathSciNet  Google Scholar 

  2. Baggett, L.: An abstract interpretation of the wavelet dimension function using group representations. J. Funct. Anal. 173, 1–20 (2000)

    Article  MathSciNet  Google Scholar 

  3. Baggett, L., Merrill, K.: Abstract harmonic analysis and wavelets in \(\mathbb R^n\). Contemp. Math. 247, 17–27 (1999)

    Google Scholar 

  4. Baggett, L., Medina, H., Merrill, K.: Generalized multiresolution analyses and a construction procedure for all wavelet sets in \(\mathbb R^n\). J. Fourier Anal. Appl. 5, 563–573 (1999)

    Google Scholar 

  5. Bownik, M.: On characterizations of multiwavelets in \(L^2(\mathbb R^n)\). Proc. Am. Math. Soc. 129, 3265–3274 (2001)

    Google Scholar 

  6. Bownik, M., Rzeszotnik, Z.: The spectral function of shift-invariant spaces. Mich. Math. J. 51, 387–414 (2003)

    Article  MathSciNet  Google Scholar 

  7. Bownik, M., Rzeszotnik, Z., Speegle, D.: A characterization of dimension functions of wavelets. Appl. Comput. Harmon. Anal. 10, 71–92 (2001)

    Article  MathSciNet  Google Scholar 

  8. Calogero, A.: A characterization of wavelets on general lattices. J. Geom. Anal. 10, 597–622 (2000)

    Article  MathSciNet  Google Scholar 

  9. Dai, X., Larson, D.: Wandering vectors for unitary systems and orthogonal wavelets. Memoirs Amer. Math. Soc. 134 (1998)

    Article  MathSciNet  Google Scholar 

  10. Dai, X., Larson, D., Speegle, D.: Wavelet sets in \(\mathbb R^n\). J. Fourier Anal. Appl. 3, 451–456 (1997)

    Google Scholar 

  11. Dai, X., Larson, D., Speegle, D.: Wavelet sets in \(\mathbb R^n\) II. Contemp. Math. 216, 15–40 (1998)

    Google Scholar 

  12. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  Google Scholar 

  13. Dixmier, J.: Von Neumann Algebras. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  14. Gripenberg, G.: A necessary and sufficient condition for the existence of a father wavelet. Stud. Math. 114, 207–226 (1995)

    Article  MathSciNet  Google Scholar 

  15. Gu, Q., Han, D.: On Multiresolution Analysis Wavelets in \(\mathbb R^n\). J. Fourier Anal. Appl. 6, 437–447 (2000)

    Google Scholar 

  16. Hernandez, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  17. Lemarié-Rieusset, P.G.: Sur l’existence des analyses multi-résolutions en théorie des ondelettes. Rev. Mat. Iberoamericana 8, 457–474 (1992)

    Article  MathSciNet  Google Scholar 

  18. Paluszyński, M., Šikić, H., Weiss, G., Xiao, S.: Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv. Comput. Math. 18, 297–327 (2003)

    MATH  Google Scholar 

  19. Ron, A., Shen, Z.: The wavelet dimension function is the trace function of a shift-invariant system. Proc. Am. Math. Soc. 131, 1385–1398 (2002)

    Article  MathSciNet  Google Scholar 

  20. Rzeszotnik, Z.: Characterization theorems in the theory of wavelets. Ph.D. thesis, Washington University, St. Louis (2000)

    Google Scholar 

  21. Weber, E.: Applications of the wavelet multiplicity function. Contemp. Math. 247, 297–306 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merrill, K.D. (2018). The Multiplicity Function. In: Generalized Multiresolution Analyses. Applied and Numerical Harmonic Analysis(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-99175-7_3

Download citation

Publish with us

Policies and ethics