Skip to main content

Dynamic Analysis of Rotating Motor Protein (ATP Synthase) Using FEM

  • Conference paper
  • First Online:
Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM (IFToMM 2018)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 63))

Included in the following conference series:

  • 1469 Accesses

Abstract

The ATP synthase is a vital protein structured enzyme for energy production in our cells which synthesize the molecule adenosine tri-phosphate (ATP). ATP synthase is located at the inner membranes of mitochondria. The protein consists of two coupled rotary molecular motors, called F0 and F1, the former one being membrane embedded and the latter one being solvent exposed. Molecular motor can produce constant 40 pN·nm torque, over broad range of speed 10 to 400 rps, works in high efficiency. Structure of a rotating motor protein is very interesting and much different than classical engineering motors. Motor protein has one rotor sharing by two motors. Therefore, it rotates in two reciprocal purposes. Most of the research on ATP synthase is based on experimental observations. There are some computer simulation studies on the motor proteins to determine their mode shapes. Upon this, rotor dynamics analysis can help to estimate the correct mode shapes during the rotation and, to determine the critical rotational speeds. In this study, the dynamics of rotating motor protein will be investigated by using finite element modeling based on beam theory. Campbell diagram and resonance profiles has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Senior AE, Nadanaciva S, Weber J (2002) The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim Biophys Acta Bioenerg 1553(3):188–211

    Article  Google Scholar 

  2. Yamato I, Kakinuma Y, Murata T (2016) Operating principles of rotary molecular motors: differences between F1 and V1 motors. Biophys Physicobiol 13:117–126

    Article  Google Scholar 

  3. Protein Data Bank Japan (PDBj). https://pdbj.org/chemie/summary/ATP. Accessed 5 Feb 2018

  4. Gert-Jan B, Haruki N, Akira RK (2016) Molmil: a molecular viewer for the PDB and beyond. J Cheminform 8(42)

    Google Scholar 

  5. HyperPhysics, an educational website. http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/mitochondria.html. Accessed 15 Feb 2018

  6. Boyer PD (1997) The ATP synthase—a splendid molecular machine. Ann Rev Biochem 66:717–749

    Article  Google Scholar 

  7. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase - a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2(9):669–677

    Article  Google Scholar 

  8. Kinosita K, Yasuda R, Noji H, Adachi K (2000) A rotary molecular motor that can work at near 100% efficiency. Philos Trans R Soc B Biol Sci 355(1396):473–489

    Article  Google Scholar 

  9. Uner NE, Nishikawa Y, Okuno D, Nakano M, Yokoyama K, Noji H (2012) Single-molecule analysis of inhibitory pausing states of V1-ATPase. J Biol Chem 287(34):28327–28335

    Article  Google Scholar 

  10. Rose A, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW (2016) Web-based molecular graphics for large complexes. In: ACM proceedings of the 21st international conference on Web3D technology (Web3D 2016), pp 185–186

    Google Scholar 

  11. The Protein Data Bank (PDB). http://www.rcsb.org/3d-view/5T4Q/1. Accessed 03 Feb 2018

  12. Boyer PD (1979) The binding-change mechanism of ATP synthesis. In: Membrane bioenergetics. Addison-Wesley, Reading, MA, pp 461–479

    Google Scholar 

  13. Kinosita K Jr, Yasuda R, Noji H, Ishiwata S, Yoshida M (1998) F1-ATPase: a rotary motor made of a single molecule. Cell 93(1):21–24

    Article  Google Scholar 

  14. Mayumi N-M, Mizuki S, Robert KN, Masamitsu F (2010) The mechanism of rotating proton pumping ATPases. Biochem Biophys Acta 1797:1343–1352

    Google Scholar 

  15. Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  Google Scholar 

  16. Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  Google Scholar 

  17. Omote H, Sambonmatsu N, Saito K, Sambongi Y, Iwamoto-Kihara A, Yanagida T, Wada Y, Futai M (1999) The γ-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli. Proc Natl Acad Sci USA 96:7780–7784

    Article  Google Scholar 

  18. Nastran NX 12 (2017) Advanced Nonlinear Theory and Modeling Guide, Siemens Product Lifecycle Management Software Inc.

    Google Scholar 

  19. Nastran NX 12 (2017) Rotor Dynamics User’s Guide, Siemens Product Lifecycle Management Software Inc.

    Google Scholar 

  20. FEMAP User Guide, Version 11.4.2, Siemens Product Lifecycle Management Software Inc. (2017)

    Google Scholar 

  21. Stock D, Gibbons C, Arechaga I, Leslie AGW, Walker JE (2000) The rotary mechanism of ATP-synthase. Curr Opin Struct Biol 10(6):672–679

    Article  Google Scholar 

  22. Richardson RA, Papachristos K, Read DJ, Harlen OG, Harrison M, Paci E, Stephen PM, Harris SA (2014) Understanding the apparent stator-rotor connections in the rotary ATPase family using coarse-grained computer modeling. Proteins Struct Funct Bioinform 82(12):3298–3311

    Article  Google Scholar 

  23. Czub J, Grubmuller H (2011) Torsional elasticity and energetics of F1-ATPase. Proc Natl Acad Sci 108(18):7408–7413

    Article  Google Scholar 

  24. Hilbers F, Junge W, Sielaff H (2013) The torque of rotary F-ATPase can unfold subunit gamma if rotor and stator are cross-linked. PLoS ONE 8(1):8–15

    Google Scholar 

  25. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290(5496):1555–1558

    Article  Google Scholar 

  26. Kucharczyk R, Zick M, Bietenhader M, Rak M, Couplan E, Blondel M, Caubet S-D, di Rago J-P (2009) Mitochondrial ATP synthase disorders: molecular mechanisms and the quest for curative therapeutic approaches. Biochim Biophys Acta Mol Cell Res 1793(1):186–199

    Article  Google Scholar 

  27. Beck SJ, Guo L, Phensy A, Tian J, Wang L, Tandon N, Gauba E, Lu L, Pascual JM, Kroener S, Du H (2016) Deregulation of mitochondrial F1F0-ATP synthase via OSCP in Alzheimer’s disease. Nature Commun 7

    Google Scholar 

  28. Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222–232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Tirtom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tirtom, I., Luo, X., Hatayama, E. (2019). Dynamic Analysis of Rotating Motor Protein (ATP Synthase) Using FEM. In: Cavalca, K., Weber, H. (eds) Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM. IFToMM 2018. Mechanisms and Machine Science, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-99272-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99272-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99271-6

  • Online ISBN: 978-3-319-99272-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics