Skip to main content

Spitzer Series and Regularly Varying Functions

  • Chapter
  • First Online:
Pseudo-Regularly Varying Functions and Generalized Renewal Processes

Part of the book series: Probability Theory and Stochastic Modelling ((PTSM,volume 91))

  • 553 Accesses

Abstract

Let X, {X n}n≥1 be independent, identically distributed random variables with distribution function F and let {S n}n≥1 be the sequence of their partial sums. Let w and φ be two positive functions. Put w k = w(k) and φ k = φ(k). We study the convergence and the asymptotic behavior with respect to small parameters ε of the series

$$\displaystyle Q(\varepsilon )=\sum _{k=1}^\infty w_k P(|S_k| \ge \varepsilon \varphi _k),\qquad \varepsilon >0.$$

Main result of this chapter is Theorem 11.1, together with some corollaries, which exhibit possible asymptotics for simple choices of the functions w(⋅) and φ(⋅) in (11.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Aljančić, R. Bojanić, and M. Tomić, Sur la valeur asymptotique d’une classe des intégrales définies, Acad. Serbe Sci. Publ. Inst. Math. 7 (1954), 81–94.

    MathSciNet  MATH  Google Scholar 

  2. L.E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), no. 1, 108–123.

    Article  MathSciNet  Google Scholar 

  3. V.V. Buldygin, Strong laws of large numbers and convergence to zero of Gaussian sequences, Teor. Imovirnost. Matem. Statist. 19 (1978), 33–41; English transl. in Theory Probab. Math. Statist. 19 (1978), 33–41.

    Google Scholar 

  4. V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, Precise asymptotics over a small parameter for a series of large deviation probabilities, Theory Stoch. Process. 13 (29)(2007), no. 1–2, 44–56.

    Google Scholar 

  5. R. Chen, A remark on the tail probability of a distribution, J. Multivariate Anal. 8(1978), no. 2, 328–333.

    Article  MathSciNet  Google Scholar 

  6. Y.S. Chow and T.L. Lai, Some one-sided theorems on the tail distribution of samples with applications to the last time and largest excess of boundary crossings, Trans. Amer. Math. Soc. 208(1975), 51–72.

    Article  MathSciNet  Google Scholar 

  7. Y.S. Chow and T.L. Lai, Paley-type inequalities and convergence rates related to the law of large numbers and extended renewal theory, Z. Wahrscheinlichkeitstheorie verw. Gebiete 45(1978), no. 1, 1–19.

    Google Scholar 

  8. P. Erdös, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), no. 2, 286–291.

    Article  MathSciNet  Google Scholar 

  9. P. Erdös, Remark on my paper “On a theorem of Hsu and Robbins”, Ann. Math. Statist. 21 (1950), no. 1, 138.

    Article  MathSciNet  Google Scholar 

  10. E. Fisher, M. Berman, N. Vowels, and C. Wilson, Excursions of a normal random walk above a boundary, Statist. Probab. Lett. 48 (2000), 141–151.

    Article  MathSciNet  Google Scholar 

  11. M.U. Gafurov and A.D. Slastnikov, Some problems of the exit of a random walk beyond a curvilinear boundary and large deviations, Teor. Veroyatnost. i Primenen. 32 (1987), no. 2, 327–348; English transl. in Theory Probab. Appl. 32 (1987), no. 2, 299–321.

    Article  Google Scholar 

  12. G.N. Griffiths and F.T. Wright, Moments of the number of deviations of sums of independent identically distributed random variables, Sankhyā, Series A 37 (1975), no. 3, 452–455.

    MathSciNet  MATH  Google Scholar 

  13. A. Gut and A. Spătaru, Precise asymptotics in the Baum-Katz and Davis laws of large Numbers, J. Math. Anal. Appl. 248 (2000), no. 1, 233–246.

    Article  MathSciNet  Google Scholar 

  14. A. Gut and J. Steinebach, Convergence rates and precise asymptotics for renewal counting processes and some first passage times, Fields Inst. Comm. 44 (2004), 205–227.

    MathSciNet  MATH  Google Scholar 

  15. A. Gut and J. Steinebach, Convergence rates in precise asymptotics, J. Math. Anal. Appl. 390 (2012), no. 1, 1–14.

    Article  MathSciNet  Google Scholar 

  16. C.C. Heyde, On large deviation probabilities in the case of attraction to a non-normal stable Law, Sankhyā A30 (1968), no. 3, 253–258.

    MathSciNet  MATH  Google Scholar 

  17. C.C. Heyde, A supplement to the strong law of large numbers, J. Appl. Probab. 12 (1975), no. 1, 173–175.

    Article  MathSciNet  Google Scholar 

  18. C.C. Heyde and V.K. Rohatgi, A pair of complementary theorems on convergence rates in the law of large numbers, Proc. Camb. Phil. Soc. 63 (1967), no. 1, 73–82.

    Article  MathSciNet  Google Scholar 

  19. P.L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci U.S.A. 33 (1947), no. 2, 25–31.

    Article  MathSciNet  Google Scholar 

  20. I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971.

    MATH  Google Scholar 

  21. K.-H. Indlekofer and O.I. Klesov, The complete convergence in the strong law of large numbers for double sums indexed by a sector with function boundaries, Teor. Imovir. Mat. Stat. 68 (2003), 44–48 (Ukrainian); English transl. in Theory Probab. Math. Statist. 68 (2004), 49–53.

    Google Scholar 

  22. K.-H. Indlekofer and O.I. Klesov, The asymptotic behavior over a small parameter of a series of large deviation probabilities weighted with the Dirichlet divisors function, Funct. Approx. Comment. Math. 35 (2006), no. 1, 117–131.

    Article  MathSciNet  Google Scholar 

  23. K.-H. Indlekofer and O.I. Klesov, Strong law of large numbers for multiple sums whose indices belong to a sector with function boundaries, Teor. Veroyatnost. i Primenen. 52 (2007), no. 4, 803–810 (Russian); English transl. in Theory Probab. Appl. 52 (2008), no. 4, 711–719.

    Article  Google Scholar 

  24. Chung-siung Kao, On the time and the excess of linear boundary crossings of sample sums, Ann. Statist. 6 (1978), no. 1, 191–199.

    Article  MathSciNet  Google Scholar 

  25. J. Karamata, Sur un mode de croissance régulière. Theéorèmes fondamentaux, Bull. Soc. Math. France 61 (1933), 55–62.

    Article  MathSciNet  Google Scholar 

  26. M. Katz, The probability in the tail of a distribution, Ann. Math. Statist. 34 (1963), no. 1, 312–318.

    Article  MathSciNet  Google Scholar 

  27. F.C. Klebaner, Expected number of excursions above curved boundarie by a random walk, Bull. Austral. Math. Soc. 41 (1990), 207–213.

    Article  MathSciNet  Google Scholar 

  28. O. Klesov and U. Stadtmüler, Existence of moments of a counting process and convergence in multidimensional time, Adv. in Appl. Probab. 48 (2016), no. A, 181–201.

    Article  MathSciNet  Google Scholar 

  29. A.I. Martikainen and V.V. Petrov, On necessary and sufficient conditions for the law of the iterated logarithm, Teor. Veroyatnost. i Primenen. 22 (1977), no. 1, 18–26 (Russian); English transl. in Theory Probab. Appl. 22 (1977), no. 1, 16–23.

    Article  MathSciNet  Google Scholar 

  30. S. Parameswaran, Partition functions whose logarithms are slowly oscillating, Trans. Amer. Math. Soc. 100 (1961), no. 2, 217–240.

    Article  MathSciNet  Google Scholar 

  31. Yu.V. Prokhorov, On the strong law of large numbers, Izv. Akad. Nauk SSSR, Ser. Mat. 14 (1950), no. 6, 523–536. (Russian)

    Google Scholar 

  32. H. Robbins, D. Siegmund, and J. Wendell, The limiting distribution of the last time S n ≥ εn, Proc. Nat. Acad Sci. U.S.A. 61 (1968), 1228–1230.

    Article  MathSciNet  Google Scholar 

  33. L.V. Rozovskiı̆, On exact asymptotics in the weak law of large numbers for sums of independent random variables with a common distribution function from the domain of attraction of a stable law, Teor. Veroyatnost. i Primenen. 48 (2003), no. 3, 589–596 (Russian); English transl. in Theory Probab. Appl. 48 (2004), no. 3, 561–568.

    Google Scholar 

  34. L.V. Rozovskiı̆, On exact asymptotics in the weak law of large numbers for sums of independent random variables with a common distribution function from the domain of attraction of a stable law. II, Teor. Veroyatnost. i Primenen. 49 (2004), no. 4, 803–813 (Russian); English transl. in Theory Probab. Appl. 49 (2005), no. 4, 724–734.

    Google Scholar 

  35. H.-P. Scheffler, Precise asymptotics in Spitzer and Baum–Katz’s law of large numbers: the semistable case, J. Math. Anal. Appl. 288 (2003), no. 1, 285–298.

    Article  MathSciNet  Google Scholar 

  36. E. Seneta, Regularly Varying Functions, Springer-Verlag, Berlin–Heidelberg–New York, 1976.

    Book  Google Scholar 

  37. J. Slivka and N.C. Severo, On the strong law of large numbers, Proc. Amer. Math. Soc. 24 (1970), 729–734.

    Article  MathSciNet  Google Scholar 

  38. A. Spătaru, Precise asymptotics in Spitzer’s law of large numbers, J. Theor. Probab. 12 (1999), no. 3, 811–819.

    Article  MathSciNet  Google Scholar 

  39. F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956), no. 2, 323–339.

    Article  MathSciNet  Google Scholar 

  40. H.H. Stratton, Moments of oscillations and ruled sums, Ann.Math. Statist. 43 (1972), no. 3, 1012–1016.

    Article  MathSciNet  Google Scholar 

  41. N.A. Volodin and S.V. Nagaev, A remark on the strong law of large numbers, Teor. Veroyatnost. i Primenen. 22 (1977), no. 4, 829–831 (Russian); English transl. in Theory Probab. Appl. 22 (1977), no. 4, 810–813.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buldygin, V.V., Indlekofer, KH., Klesov, O.I., Steinebach, J.G. (2018). Spitzer Series and Regularly Varying Functions. In: Pseudo-Regularly Varying Functions and Generalized Renewal Processes. Probability Theory and Stochastic Modelling, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-99537-3_11

Download citation

Publish with us

Policies and ethics