Skip to main content

Considerations Needed for Sensing Mineral Nutrient Levels in Pasture Using a Benchtop Laser-Induced Breakdown Spectroscopy System

  • Chapter
  • First Online:
Modern Sensing Technologies

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 29))

Abstract

Precision agriculture aims to increase yield and profits while reducing costs, waste, and environmental side-effects. This is achieved through a process of measuring, modelling and acting; for example, laser-induced breakdown spectroscopy (LIBS) can be used to measure macro and micro nutrients in crops to determine nutrient requirements. The limiting factor with quantitative LIBS analysis of plant nutrient levels is the variation between shots on the same sample. Following a review of current literature relevant to LIBS for agriculture, this work investigates whether different chemometric methods can mitigate these variations and can create quantitative calibrations for nutrient levels in fresh and dried pelletised pasture under laboratory conditions. The methods explored were Savitzky Golay filtering, multiple linear regression, principal component regression, partial least-squares regression, gaussian process regression, and artificial neural networks. The algorithms that performed best were partial least-squares with gaussian process regression (R2 of 0.93, 0.95, and 0.92 for K, Na, and Mn, respectively), principal components analysis with artificial neural networks (R2 of 0.94, 0.83, and 0.80 for Fe, Ca, and Mg, respectively), and partial least-squares with artificial neural networks (R2 of 0.77 for B). Removing the moisture from the pasture improved model R2 values by 4–5% on average. Acquiring spectra under an argon purge produced a small reduction in accuracy for some nutrients compared to models acquired in air. Including categorical data in the principal component regression and the artificial neural networks produced negligible improvements in prediction. This chapter will give an introduction of using different types of chemometric analyses on spectra generated by LIBS to measure micro and macro nutrients in pasture under laboratory conditions. It discusses the challenges faced when building models for each nutrient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. van Maarschalkerweerd, S. Husted, Recent developments in fast spectroscopy for plant mineral analysis. Front. Plant Sci. 6, 169 (2015)

    Article  Google Scholar 

  2. D. Cremers, L. Radziemski, Introduction, in Handbook of Laser-Induced Breakdown Spectroscopy, 2nd edn. (Wiley, West Sussex, UK, 2013), p. 3

    Google Scholar 

  3. S.N. Thakur, Atomic emission spectroscopy, in Laser-Induced Breakdown Spectroscopy, ed. by J.P. Singh, S.N. Thakur (Elsevier, Oxford, UK, 2007), pp. 29–30

    Google Scholar 

  4. D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 66, 347–419 (2012)

    Article  Google Scholar 

  5. G. Galbács, I.B. Gornushkin, B.W. Smith, J.D. Winefordner, Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation. Spectrochim. Acta Part B Atomic Spectrosc. 56, 1159–1173 (2001)

    Article  Google Scholar 

  6. S. Palanco, J.J. Laserna, Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities. J. Anal. Atomic Spectrom. 15, 1321–1327 (2000)

    Article  Google Scholar 

  7. R. Wisbrun, I. Schechter, R. Niessner, H. Schröder, K.L. Kompa, Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy. Anal. Chem. 66, 2964–2975 (1994)

    Article  Google Scholar 

  8. U. Panne, M. Clara, C. Haisch, R. Niessner, Analysis of glass and glass melts during the vitrification of fly and bottom ashes by laser-induced plasma spectroscopy. Part II. Process analysis. Spectrochim. Acta Part B: Atomic Spectros. 53, 1969–1981 (1998)

    Article  Google Scholar 

  9. J.B. Sirven, B. Bousquet, L. Canioni, L. Sarger, Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods. Anal. Chem. 78, 1462–1469 (2006)

    Article  Google Scholar 

  10. D. Cremers, L. Radziemski, LIBS apparatus fundamentals, in Handbook of Laser-Induced Breakdown Spectroscopy, ed. by D. Cremers, L. Radziemski, 2nd edn. (Wiley, West Sussex, UK, 2013), pp. 69–121

    Google Scholar 

  11. M. Garcimuño, D.M. Díaz Pace, G. Bertuccelli, Laser-induced breakdown spectroscopy for quantitative analysis of copper in algae. Opt. Laser Technol. 47, 26–30 (2013)

    Google Scholar 

  12. L. Niu, H.H. Cho, K.S. Song, H. Cha, Y. Kim, Y.I. Lee, Direct determination of strontium in marine algae samples by laser-induced breakdown spectrometry. Appl. Spectrosc. 56, 1511–1514 (2002)

    Article  Google Scholar 

  13. M.M. El-Deftar, J. Robertson, S. Foster, C. Lennard, Evaluation of elemental profiling methods, including laser-induced breakdown spectroscopy (LIBS), for the differentiation of Cannabis plant material grown in different nutrient solutions. Forensic Sci. Int. 251, 95–106 (2015)

    Article  Google Scholar 

  14. J.W.B. Braga, L.C. Trevizan, L.C. Nunes, I.A. Rufini, D. Santos Jr., F.J. Krug, Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry. Spectrochim. Acta Part B Atomic Spectrosc. 65, 66–74 (2010)

    Article  Google Scholar 

  15. L.C. Trevizan, D. Santos Jr., R.E. Samad, N.D. Vieira Jr., L.C. Nunes, I.A. Rufini, F.J. Krug, Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials. Spectrochim. Acta Part B Atomic Spectrosc. 64, 369–377 (2009)

    Article  Google Scholar 

  16. L.C. Trevizan, D. Santos Jr., R.E. Samad, N.D. Vieira Jr., C.S. Nomura, L.C. Nunes, I.A. Rufini, F.J. Krug, Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials. Spectrochim. Acta Part B Atomic Spectrosc. 63, 1151–1158 (2008)

    Article  Google Scholar 

  17. D.K. Chauhan, D.K. Tripathi, N.K. Rai, A.K. Rai, Detection of biogenic silica in leaf blade, leaf sheath, and stem of Bermuda grass (Cynodon dactylon) using LIBS and phytolith analysis. Food Biophys. 6, 416–423 (2011)

    Article  Google Scholar 

  18. P.K. Rai, D. Jaiswal, N.K. Rai, S. Pandhija, A.K. Rai, G. Watal, Role of glycemic elements of Cynodon dactylon and Musa paradisiaca in diabetes management. Lasers Med. Sci. 24, 761–768 (2009)

    Article  Google Scholar 

  19. M. Iqbal, Z. ul Haq, A. Malik, C.M. Ayoub, Y. Jamil, J. Nisar, Pre-sowing seed magnetic field stimulation: a good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatal. Agric. Biotechnol. 5, 30–37 (2016)

    Google Scholar 

  20. N.K. Rai, P.K. Rai, S. Pandhija, G. Watal, A.K. Rai, D. Bicanic, Application of LIBS in detection of antihyperglycemic trace elements in Momordica charantia. Food Biophys. 4, 167–171 (2009)

    Article  Google Scholar 

  21. P. Zheng, M. Shi, J. Wang, H. Liu, The spectral emission characteristics of laser induced plasma on tea samples. Plasma Sci. Technol 17, 664–670 (2015)

    Article  Google Scholar 

  22. G.G.A. de Carvalho, D. Santos Jr., M. da Silva Gomes, L.C. Nunes, M.B.B. Guerra, F.J. Krug, Influence of particle size distribution on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 105, 130–135 (2015)

    Article  Google Scholar 

  23. M.R. Martelli, F. Brygo, P. Delaporte, X. Rouau, C. Barron, Estimation of wheat grain tissue cohesion via laser induced breakdown spectroscopy. Food Biophys. 6, 433–439 (2011)

    Article  Google Scholar 

  24. L. Krajcarová, K. Novotný, M. Kummerová, J. Dubová, V. Gloser, J. Kaiser, Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS). Talanta 173, 28–35 (2017)

    Article  Google Scholar 

  25. S. Awasthi, R. Kumar, A. Devanathan, R. Acharya, A.K. Rai, Multivariate methods for analysis of environmental reference materials using laser-induced breakdown spectroscopy. Anal. Chem. Res. 12, 10–16 (2017)

    Article  Google Scholar 

  26. M. Galiová, J. Kaiser, K. Novotný, M. Hartl, R. Kizek, P. Babula, Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum l. leaves. Microsc. Res. Tech. 74, 845–852 (2011)

    Google Scholar 

  27. N. Shukla, A.S. Bharti, S. Srivastava, K.N. Uttam, Determination of elements in carrot root by laser induced breakdown spectroscopy. Nat. Acad. Sci. Lett. 40, 47–51 (2017)

    Article  Google Scholar 

  28. C.R. Bhatt, B. Alfarraj, C.T. Ghany, F.Y. Yueh, J.P. Singh, Comparative study of elemental nutrients in organic and conventional vegetables using laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 71, 686–698 (2017)

    Article  Google Scholar 

  29. M. Yao, H. Yang, L. Huang, T. Chen, G. Rao, M. Liu, Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy. Appl. Opt. 56, 4070–4075 (2017)

    Article  Google Scholar 

  30. J. Wang, P. Zheng, H. Liu, L. Fang, Classification of Chinese tea leaves using laser-induced breakdown spectroscopy combined with the discriminant analysis method. Anal. Methods 8, 3204–3209 (2016)

    Article  Google Scholar 

  31. M.M. Suliyanti, M. Pardede, T.J. Lie, K.H. Kurniawan, A. Khumaeni, K. Kagawa, M.O. Tjia, Y.I. Lee, Direct powder analysis by laser-induced breakdown spectroscopy utilizing laser-controlled dust production in a small chamber. J. Korean Phys. Soc. 58, 1129–1134 (2011)

    Article  Google Scholar 

  32. F.M.V. Pereira, D.M.B.P. Milori, A.L. Venâncio, M.D.S.T. Russo, P.K. Martins, J. Freitas-Astúa, Evaluation of the effects of Candidatus Liberibacter asiaticus on inoculated citrus plants using laser-induced breakdown spectroscopy (LIBS) and chemometrics tools. Talanta 83, 351–356 (2010)

    Article  Google Scholar 

  33. A.C. Ranulfi, R.A. Romano, A. Bebeachibuli Magalhães, E.J. Ferreira, P. Ribeiro Villas-Boas, D. Marcondes Bastos Pereira Milori, Evaluation of the nutritional changes caused by Huanglongbing (HLB) to citrus plants using laser-induced breakdown spectroscopy. Appl. Spectrosc. 71, 1471–1480 (2017)

    Google Scholar 

  34. E.J. Ferreira, E.C. Ferreira, A.C.B. Delbem, D.M.B.P. Milori, Ensemble of predictors and laser induced breakdown spectroscopy for certifying coffee. Electron. Lett. 47, 967–969 (2011)

    Article  Google Scholar 

  35. M.A. Gondal, U. Baig, M.A. Dastageer, M. Sarwar, Determination of elemental composition of coffee using UV-pulsed laser induced breakdown spectroscopy, in AIP Conference Proceedings, Gizan, Saudi Arabia (2016), p. 030007

    Google Scholar 

  36. T.V. Silva, S.Z. Hubinger, J.A. Gomes Neto, D.M.B.P. Milori, E.J. Ferreira, E.C. Ferreira, Potential of laser induced breakdown spectroscopy for analyzing the quality of unroasted and ground coffee. Spectrochim. Acta Part B Atomic Spectrosc. 135, 29–33 (2017)

    Article  Google Scholar 

  37. E.R. Schenk, J.R. Almirall, Elemental analysis of cotton by laser-induced breakdown spectroscopy. Appl. Opt. 49, C153–C160 (2010)

    Article  Google Scholar 

  38. D.K. Kushawaha, M. Yadav, S. Chatterji, A.K. Srivastava, G. Watal, α-amylase and α-glucosidase inhibitory activity assessment of Cucurbita maxima seeds—a LIBS based study. Int. J. Phytomed. 8, 312–318 (2016)

    Article  Google Scholar 

  39. J.N. Kunz, D.V. Voronine, B.A. Ko, H.W.H. Lee, A. Rana, M.V. Bagavathiannan, A.V. Sokolov, M.O. Scully, Interaction of femtosecond laser pulses with plants: towards distinguishing weeds and crops using plasma temperature. J. Mod. Opt. 64, 942–947 (2017)

    Article  Google Scholar 

  40. P. Modlitbová, K. Novotný, P. Pořízka, J. Klus, P. Lubal, H. Zlámalová-Gargošová, J. Kaiser, Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicol. Environ. Safety 147, 334–341 (2018)

    Article  Google Scholar 

  41. S. Mehta, P.K. Rai, D.K. Rai, N.K. Rai, A.K. Rai, D. Bicanic, B. Sharma, G. Watal, LIBS-based detection of antioxidant elements in seeds of Emblica officinalis. Food Biophys. 5, 186–192 (2010)

    Article  Google Scholar 

  42. R.K. Singh, S. Mehta, D. Jaiswal, P.K. Rai, G. Watal, Antidiabetic effect of Ficus bengalensis aerial roots in experimental animals. J. Ethnopharmacol. 123, 110–114 (2009)

    Article  Google Scholar 

  43. D. Sun, M. Su, C. Dong, D. Zhang, X. Ma, A semi-quantitative analysis of essential micronutrient in folium lycii using laser-induced breakdown spectroscopy technique. Plasma Sci. Technol 12, 478–481 (2010)

    Article  Google Scholar 

  44. H. Hu, L. Huang, M. Liu, T. Chen, P. Yang, M. Yao, Nondestructive determination of cu residue in orange peel by laser induced breakdown spectroscopy. Plasma Sci. Technol 17, 711–715 (2015)

    Article  Google Scholar 

  45. M. Yao, L. Huang, J. Zheng, S. Fan, M. Liu, Assessment of feasibility in determining of Cr in Gannan Navel Orange treated in controlled conditions by laser induced breakdown spectroscopy. Opt. Laser Technol. 52, 70–74 (2013)

    Article  Google Scholar 

  46. A.A. Bol’shakov, J.H. Yoo, C. Liu, J.R. Plumer, R.E. Russo, Laser-induced breakdown spectroscopy in industrial and security applications. Appl. Opt. 49, C132–C142 (2010)

    Article  Google Scholar 

  47. P.K. Rai, N.K. Rai, A.K. Rai, G. Watal, Role of LIBS in elemental analysis of Psidium guajava responsible for glycemic potential. Instrum Sci. Technol. 35, 507–522 (2007)

    Article  Google Scholar 

  48. D.C. Zhang, X. Ma, W.Q. Wen, H.P. Liu, P.J. Zhang, Studies of laser induced-breakdown spectroscopy of holly leaves. J. Phys: Conf. Ser. 185, 012058 (2009)

    Google Scholar 

  49. D.-C. Zhang, X.-W. Ma, W.-Q. Wen, P.-J. Zhang, X.-L. Zhu, B. Li, H.-P. Liu, Influence of laser wavelength on laser-induced breakdown spectroscopy applied to semi-quantitative analysis of trace-elements in a plant sample. Chin. Phys. Lett. 27, 063202 (4 pp.) (2010)

    Google Scholar 

  50. X. Liu, J. Huang, Z. Wu, Q. Zhang, X. Shi, N. Zhao, S. Jia, Y. Qiao, Microanalysis of multi-element in Juncus effusus L. by LIBS technique. Plasma Sci. Technol 17, 904–908 (2015)

    Article  Google Scholar 

  51. V. Diopan, V. Shestivska, O. Zitka, M. Galiova, V. Adam, J. Kaiser, A. Horna, K. Novotny, M. Liska, L. Havel, J. Zehnalek, R. Kizek, Determination of plant thiols by liquid chromatography coupled with coulometric and amperometric detection in lettuce treated by lead(II) ions. Electroanalysis 22, 1248–1259 (2010)

    Article  Google Scholar 

  52. J. Wang, S. Xue, P. Zheng, Y. Chen, R. Peng, Determination of lead and copper in ligusticum wallichii by laser-induced breakdown spectroscopy. Anal. Lett. 50, 2000–2011 (2017)

    Article  Google Scholar 

  53. S. Qamar, M. Aslam, M.A. Javed, Determination of proximate chemical composition and detection of inorganic nutrients in maize (Zea mays L.), in Materials Today: Proceedings, New York, USA (2016), pp. 715–718

    Google Scholar 

  54. O. Krystofova, V. Shestivska, M. Galiova, K. Novotny, J. Kaiser, J. Zehnalek, P. Babula, R. Opatrilova, V. Adam, R. Kizek, Sunflower plants as bioindicators of environmental pollution with lead (II) ions. Sensors 9, 5040–5058 (2009)

    Article  Google Scholar 

  55. C. Zhao, D. Dong, X. Du, W. Zheng, In-field, in situ, and in vivo 3-dimensional elemental mapping for plant tissue and soil analysis using laser-induced breakdown spectroscopy, Sensors (Basel, Switzerland), 16, 1764 (2016)

    Google Scholar 

  56. O. Samek, J. Lambert, R. Hergenroder, M. Liska, J. Kaiser, K. Novotny, S. Kukhlevsky, Femtosecond laser spectrochemical analysis of plant samples. Laser Phys. Lett. 3, 21–25 (2006)

    Article  Google Scholar 

  57. M. Barbafieri, R. Pini, A. Ciucci, E. Tassi, Field assessment of Pb in contaminated soils and in leaf mustard (Brassica juncea): the LIBS technique. Chem. Ecol. 27, 161–169 (2011)

    Article  Google Scholar 

  58. Y. Mingyin, L. Jinlong, L. Muhua, L. Qiulian, L. Zejian, Discrimination of Ca, Cu, Fe, and Na in Gannan Navel orange by laser induced breakdown spectroscopy, in 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Nanchang, China (2011), pp. 608–613

    Google Scholar 

  59. D.K. Tripathi, A.K. Pathak, D.K. Chauhan, N.K. Dubey, A.K. Rai, R. Prasad, An efficient approach of laser induced breakdown spectroscopy (LIBS) and ICAP-AES to detect the elemental profile of Ocimum L. species. Biocatal. Agric. Biotechnol. 4, 471–479 (2015)

    Google Scholar 

  60. M. Yao, M. Liu, J. Zhao, L. Huang, Identification of nutrition elements in orange leaves by laser induced breakdown spectroscopy, in 2010 Third International Symposium on Intelligent Information Technology and Security Informatics (IITSI), Jinggangshan, China (2010), pp. 398–401

    Google Scholar 

  61. Z. Lei, M. Yao, M. Liu, Q. Peng, X. Zhang, T. Chen, Y. Xu, Analysis the macronutrients in Gannan navel oranges for three kinds of sample state by laser induced breakdown spectroscopy, in 2011 4th International Congress on Image and Signal Processing (CISP), Shanghai, China (2011), pp. 2464–2466

    Google Scholar 

  62. X. Zhang, M. Yao, M. Liu, Z. Lei, Analysis of trace elements in leaves using laser-induced breakdown spectroscopy,” in 5th International Conference on Computer and Computing Technologies in Agriculture, CCTA, Beijing, China (2011), pp. 334–339

    Google Scholar 

  63. S.I. Gornushkin, I.B. Gornushkin, J.M. Anzano, B.W. Smith, J.D. Winefordner, Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples. Appl. Spectrosc. 56, 433–436 (2002)

    Article  Google Scholar 

  64. K. Devey, M. Mucalo, G. Rajendram, J. Lane, Pasture vegetation elemental analysis by laser-induced breakdown spectroscopy. Commun. Soil Sci. Plant Anal. 46, 72–80 (2015)

    Article  Google Scholar 

  65. Z. Haider, J. Ali, M. Arab, Y.B. Munajat, S. Roslan, R. Kamarulzman, N. Bidin, Plasma diagnostics and determination of lead in soil and phaleria macrocarpa leaves by ungated laser induced breakdown spectroscopy. Anal. Lett. 49, 808–817 (2016)

    Article  Google Scholar 

  66. A.C. Samuels, F.C. DeLucia Jr., K.L. McNesby, A.W. Miziolek, Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: Initial studies of discrimination potential. Appl. Opt. 42, 6205–6209 (2003)

    Article  Google Scholar 

  67. A.R. Boyain-Goitia, D.C.S. Beddows, B.C. Griffiths, H.H. Telle, Single-pollen analysis by laser-induced breakdown spectroscopy and raman microscopy. Appl. Opt. 42, 6119–6132 (2003)

    Article  Google Scholar 

  68. S. Ma, X. Gao, K. Guo, M. Kahsay, J. Lin, Analysis of the element content in poplar tree leaves by femtosecond laser-induced breakdown spectroscopy. Sci. China Phys. Mech. Astron. 54, 1953–1957 (2011)

    Article  Google Scholar 

  69. W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, J. Yu, Time-resolved characterization of laser-induced plasma from fresh potatoes. Spectrochim. Acta Part B Atomic Spectrosc. 64, 891–898 (2009)

    Article  Google Scholar 

  70. S. Beldjilali, W.L. Yip, J. Hermann, T. Baba-Hamed, A. Belasri, Investigation of plasmas produced by laser ablation using single and double pulses for food analysis demonstrated by probing potato skins. Anal. Bioanal. Chem. 400, 2173–2183 (2011)

    Article  Google Scholar 

  71. S. Beldjilali, D. Borivent, L. Mercadier, E. Mothe, G. Clair, J. Hermann, Evaluation of minor element concentrations in potatoes using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 65, 727–733 (2010)

    Article  Google Scholar 

  72. V. Juvé, R. Portelli, M. Boueri, M. Baudelet, J. Yu, Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 63, 1047–1053 (2008)

    Article  Google Scholar 

  73. A. Khumaeni, Z.S. Lie, H. Niki, K.H. Kurniawan, E. Tjoeng, Y.I. Lee, K. Kurihara, Y. Deguchi, K. Kagawa, Direct analysis of powder samples using transversely excited atmospheric CO 2 laser-induced gas plasma at 1 atm. Anal. Bioanal. Chem. 400, 3279–3287 (2011)

    Article  Google Scholar 

  74. T. Flores, L. Ponce, M. Arronte, E. de Posada, Free-running and Q: switched LIBS measurements during the laser ablation of prickle pears spines. Opt. Lasers Eng. 47, 578–583 (2009)

    Article  Google Scholar 

  75. P. Dhar, I. Gembitsky, P. Rai, N. Rai, A.K. Rai, G. Watal, A possible connection between antidiabetic & antilipemic properties of psoralea corylifolia seeds and the trace elements present: a LIBS based study. Food Biophys. 8, 95–103 (2013)

    Google Scholar 

  76. P. Dhar, I. Gembitsky, P.K. Rai, N.K. Rai, A.K. Rai, G. Watal, A possible connection between antidiabetic & antilipemic properties of psoralea corylifolia seeds and the trace elements present: a LIBS based study, Food Biophys. 1–9 (2012)

    Google Scholar 

  77. X. Du, D. Dong, X. Zhao, L. Jiao, P. Han, Y. Lang, Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy. RSC Adv. 5, 79956–79963 (2015)

    Article  Google Scholar 

  78. T.J. Jiang, Z. Guo, M.J. Ma, L. Fang, M. Yang, S.S. Li, J.H. Liu, N.J. Zhao, X.J. Huang, W.Q. Liu, Electrochemical laser induced breakdown spectroscopy for enhanced detection of Cd(II) without interference in rice on layer-by-layer assembly of graphene oxides. Electrochim. Acta 216, 188–195 (2016)

    Article  Google Scholar 

  79. J. Peng, Y. He, L. Ye, T. Shen, F. Liu, W. Kong, X. Liu, Y. Zhao, Moisture influence reducing method for heavy metals detection in plant materials using laser-induced breakdown spectroscopy: a case study for chromium content detection in rice leaves. Anal. Chem. 89, 7593–7600 (2017)

    Article  Google Scholar 

  80. A. Khumaeni, M. Ramli, Y. Deguchi, Y. Lee, N. Idris, K.H. Kurniawan, T.J.J. Lie, K. Kagawa, New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO2 laser-induced gas plasma. Appl. Spectrosc. 62, 1344–1348 (2008)

    Article  Google Scholar 

  81. S. Varliklioz Er, H. Eksi-Kocak, H. Yetim, I.H. Boyaci, Novel spectroscopic method for determination and quantification of saffron adulteration. Food Anal. Methods 10, 1547–1555 (2017)

    Article  Google Scholar 

  82. M. Hassan, M. Sighicelli, A. Lai, F. Colao, A.H.H. Ahmed, R. Fantoni, M.A. Harith, Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 63, 1225–1229 (2008)

    Article  Google Scholar 

  83. M. Hassan, M. Abdelhamied, A.H. Hanafy, R. Fantoni, M.A. Harith, Laser monitoring of phytoextraction enhancement of lead contaminated soil adopting EDTA and EDDS, in AIP Conference Proceedings, Cairo, Egypt (2011), pp. 93–100

    Google Scholar 

  84. J. Singh, R. Kumar, S. Awasthi, V. Singh, A.K. Rai, Laser Induced breakdown spectroscopy: a rapid tool for the identification and quantification of minerals in cucurbit seeds. Food Chem. 221, 1778–1783 (2017)

    Article  Google Scholar 

  85. M. Bossu, Z.Q. Hao, M. Baudelet, J. Yu, Z. Zhang, J. Zhang, Femtosecond laser-induced breakdown spectroscopy for detection of trace elements in sophora leaves. Chin. Phys. Lett. 24, 3466–3468 (2007)

    Article  Google Scholar 

  86. G. Nicolodelli, G.S. Senesi, A.C. Ranulfi, B.S. Marangoni, A. Watanabe, V. de Melo Benites, P.P.A. de Oliveira, P. Villas-Boas, D.M.B.P. Milori, Double-pulse laser induced breakdown spectroscopy in orthogonal beam geometry to enhance line emission intensity from agricultural samples. Microchem. J. 133, 272–278 (2017)

    Article  Google Scholar 

  87. G. Kim, J. Kwak, J. Choi, K. Park, Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS). J. Agric. Food Chem. 60, 718–724 (2012)

    Article  Google Scholar 

  88. L.C. Nunes, G.A. da Silva, L.C. Trevizan, D. Santos Júnior, R.J. Poppi, F.J. Krug, Simultaneous optimization by neuro-genetic approach for analysis of plant materials by laser induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 64, 565–572 (2009)

    Article  Google Scholar 

  89. P. Shukla, R. Kumar, A.K. Raib, Detection of minerals in green leafy vegetables using laser induced breakdown spectroscopy. J. Appl. Spectrosc. 83, 872–877 (2016)

    Article  Google Scholar 

  90. S. Zivkovic, M. Momcilovic, A. Staicu, J. Mutic, M. Trtica, J. Savovic, Spectrochemical analysis of powdered biological samples using transversely excited atmospheric carbon dioxide laser plasma excitation. Spectrochim. Acta Part B Atomic Spectrosc. 128, 22–29 (2017)

    Article  Google Scholar 

  91. H.H. Cho, Y.J. Kim, Y.S. Jo, K. Kitagawa, N. Arai, Y.I. Lee, Application of laser-induced breakdown spectrometry for direct determination of trace elements in starch-based flours. J. Anal. Atomic Spectrom. 16, 622–627 (2001)

    Article  Google Scholar 

  92. P.F. de Souza, D. Santos, G.G.A. de Carvalho, L.C. Nunes, M. da Silva Gomes, M.B.B. Guerra, F.J. Krug, Determination of silicon in plant materials by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. (2013)

    Google Scholar 

  93. J.P.R. Romera, P.L. Barsanelli, F.M.V. Pereira, Expeditious prediction of fiber content in sugar cane: An analytical possibility with LIBS and chemometrics. Fuel 166, 473–476 (2016)

    Article  Google Scholar 

  94. D.K. Tripathi, R. Kumar, D.K. Chauhan, A.K. Rai, D. Bicanic, Laser-induced breakdown spectroscopy for the study of the pattern of silicon deposition in leaves of saccharum species. Instrum Sci. Technol. 39, 510–521 (2011)

    Article  Google Scholar 

  95. G.G.A. De Carvalho, D. Santos Jr., L.C. Nunes, M.D.S. Gomes, F.D.O. Leme, F.J. Krug, Effects of laser focusing and fluence on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 74–75, 162–168 (2012)

    Article  Google Scholar 

  96. M.B. Bueno Guerra, A. Adame, E. De Almeida, G.G. Arantes De Carvalho, M.A. Stolf Brasil, D. Santos, Jr., F.J. Krug, Direct analysis of plant leaves by EDXRF and LIBS: microsampling strategies and cross-validation. J. Anal. Atomic Spectrom. 30, 1646–1654 (2015)

    Google Scholar 

  97. L.C. Nunes, J.W. Batista Braga, L.C. Trevizan, P. Florêncio De Souza, G.G. Arantes De Carvalho, D.S. Júnior, R.J. Poppi, F.J. Krug, Optimization and validation of a LIBS method for the determination of macro and micronutrients in sugar cane leaves. J. Anal. Atomic Spectrom. 25, 1453–1460 (2010)

    Article  Google Scholar 

  98. M. da Silva Gomes, G.G.A. de Carvalho, D. Santos Jr., F.J. Krug, A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: a case study with pellets of sugar cane leaves. Spectrochim. Acta Part B Atomic Spectrosc. 86, 137–141 (2013)

    Google Scholar 

  99. M.D.S. Gomes, D. Santos Jr., L.C. Nunes, G.G.A. De Carvalho, F. De Oliveira Leme, F.J. Krug, Evaluation of grinding methods for pellets preparation aiming at the analysis of plant materials by laser induced breakdown spectrometry. Talanta 85, 1744–1750 (2011)

    Google Scholar 

  100. G.G. Arantes de Carvalho, J. Moros, D. Santos Jr., F.J. Krug, J.J. Laserna, Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy. Anal. Chim. Acta 876, 26–38 (2015)

    Article  Google Scholar 

  101. M. Galiova, J. Kaiser, K. Novotny, O. Samek, L. Reale, R. Malina, K. Palenikova, M. Lika, V. Cudek, V. Kanicky, V. Otruba, A. Poma, A. Tucci, Utilization of laser induced breakdown spectroscopy for investigation of the metal accumulation in vegetal tissues. Spectrochim. Acta Part B Atomic Spectrosc. 62, 1597–1605 (2007)

    Article  Google Scholar 

  102. J. Kaiser, O. Samek, L. Reale, M. Liška, R. Malina, A. Ritucci, A. Poma, A. Tucci, F. Flora, A. Lai, L. Mancini, G. Tromba, F. Zanini, A. Faenov, T. Pikuz, G. Cinque, Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy. Microsc. Res. Tech. 70, 147–153 (2007)

    Article  Google Scholar 

  103. M. Galiova, J. Kaiser, K. Novotny, J. Novotny, T. Vaculovic, M. Lika, R. Malina, K. Stejskal, V. Adam, R. Kizek, Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Appl. Phys. A Mater. Sci. Process. 93, 917–922 (2008)

    Article  Google Scholar 

  104. S. Krizkova, P. Ryant, O. Krystofova, V. Adam, M. Galiova, M. Beklova, P. Babula, J. Kaiser, K. Novotny, J. Novotny, M. Liska, R. Malina, J. Zehnalek, J. Hubalek, L. Havel, R. Kizek, Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions—plants as bioindicators of environmental pollution. Sensors 8, 445–463 (2008)

    Article  Google Scholar 

  105. J. Kaiser, M. Galiova, K. Novotny, R. Cervenka, L. Reale, J. Novotny, M. Lika, O. Samek, V. Kanicky, A. Hrdlicka, K. Stejskal, V. Adam, R. Kizek, Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B Atomic Spectrosc. 64, 67–73 (2009)

    Article  Google Scholar 

  106. A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, T. Baumert, Femtosecond laser-induced-breakdown spectrometry for Ca 2 + analysis of biological samples with high spatial resolution. Appl. Phys. B Lasers Opt. 77, 391–397 (2003)

    Article  Google Scholar 

  107. M.Z. Martin, A.J. Stewart, K.D. Gwinn, J.C. Waller, Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue. Appl. Opt. 49, C161–C167 (2010)

    Article  Google Scholar 

  108. T. Ohta, M. Ito, T. Kotani, T. Hattori, Emission enhancement of laser-induced breakdown spectroscopy by localized surface plasmon resonance for analyzing plant nutrients. Appl. Spectrosc. 63, 555–558 (2009)

    Article  Google Scholar 

  109. J. Wang, M. Shi, P. Zheng, S. Xue, Quantitative analysis of lead in tea samples by laser-induced breakdown spectroscopy. J. Appl. Spectrosc. 84, 188–193 (2017)

    Article  Google Scholar 

  110. D.F. Andrade, E.R. Pereira-Filho, P. Konieczynski, Comparison of ICP OES and LIBS analysis of medicinal herbs rich in flavonoids from Eastern Europe. J. Braz. Chem. Soc. 28, 838–847 (2017)

    Google Scholar 

  111. D.M. Silvestre, F. de Oliveira Leme, C.S. Nomura, A.N. do Nascimento, Direct analysis of barium, calcium, potassium, and manganese concentrations in tobacco by laser-induced breakdown spectroscopy. Microchem. J. 126, 545–550 (2016)

    Google Scholar 

  112. J. Peng, K. Song, H. Zhu, W. Kong, F. Liu, T. Shen, Y. He, Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Sci. Rep. 7, 44551 (2017)

    Article  Google Scholar 

  113. X. Fang, S.R. Ahmad, Elemental analysis in environmental land samples by stand-off laser-induced breakdown spectroscopy. Appl. Phys. B, 1–7 (2013)

    Google Scholar 

  114. Q. Sun, M. Tran, B.W. Smith, J.D. Winefordner, Direct determination of P, Al, Ca, Cu, Mn, Zn, Mg and Fe in plant materials by laser-induced plasma spectroscopy. Can. J. Anal. Sci. Spectrosc. 44, 164–170 (1999)

    Google Scholar 

  115. G. Watal, B. Sharma, P. K. Rai, D. Jaiswal, D.K. Rai, N.K. Rai, A.K. Rai, LIBS-based detection of antioxidant elements: a new strategy. Methods Mol. Biol. (Clifton, N.J.) 594, 275–285 (2010)

    Google Scholar 

  116. A. Khumaeni, H. Niki, K.I. Fukumoto, Y. Deguchi, K. Kurihara, K. Kagawa, Y.I. Lee, A unique technique of laser-induced breakdown spectroscopy using transversely excited atmospheric CO2 laser for the sensitive analysis of powder samples. Curr. Appl. Phys. 11, 423–427 (2011)

    Article  Google Scholar 

  117. A. Khumaeni, H. Niki, Y. Deguchi, K. Kurihara, K. Kagawa, Y.I. Lee, Analysis of organic powder samples by using the metal-assisted subtarget effect in a Transversely-Excited Atmospheric (TEA) CO2 laser-induced he gas plasma at 1 atm. J. Korean Phys. Soc. 55, 2441–2446 (2009)

    Article  Google Scholar 

  118. M. Tiwari, R. Agrawal, A.K. Pathak, A.K. Rai, G.K. Rai, Laser-induced breakdown spectroscopy: An approach to detect adulteration in turmeric. Spectrosc. Lett. 46, 155–159 (2013)

    Article  Google Scholar 

  119. J.N. Kunz, D.V. Voronine, H.W.H. Lee, A.V. Sokolov, M.O. Scully, Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy. Opt. Express 25, 7251–7262 (2017)

    Article  Google Scholar 

  120. L.C. Peruchi, L.C. Nunes, G.G.A. de Carvalho, M.B.B. Guerra, E. de Almeida, I.A. Rufini, D. Santos Jr., F.J. Krug, Determination of inorganic nutrients in wheat flour by laser-induced breakdown spectroscopy and energy dispersive X-ray fluorescence spectrometry. Spectrochim. Acta Part B Atomic Spectrosc. 100, 129–136 (2014)

    Article  Google Scholar 

  121. G. Bilge, B.Sezer, K.E. Eseller, H. Berberoğlu, H. Köksel, İ.H. Boyacı, Determination of Ca addition to the wheat flour by using laser-induced breakdown spectroscopy (LIBS). Eur. Food Res. Technol. 242, 1685–1692 (2016)

    Google Scholar 

  122. M.R. Martelli, C. Barron, P. Delaporte, G. Viennois, X. Rouau, A. Sadoudi, Pulsed laser ablation: a new approach to reveal wheat outer layer properties. J. Cereal Sci. 49, 354–362 (2009)

    Article  Google Scholar 

  123. M.R. Martelli, F. Brygo, A. Sadoudi, P. Delaporte, C. Barron, Laser-induced breakdown spectroscopy and chemometrics: a novel potential method to analyze wheat grains. J. Agric. Food Chem. 58, 7126–7134 (2010)

    Article  Google Scholar 

  124. M. Pouzar, T. Cernohorsky, M. Prusova, P. Prokopcakova, A. Krejcova, LIBS analysis of crop plants. J. Anal. Atomic Spectrom. 24, 953–957 (2009)

    Article  Google Scholar 

  125. D.K. Tripathi, V.P. Singh, S.M. Prasad, D.K. Chauhan, N. Kishore Dubey, A.K. Rai, Silicon-mediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol. Environ. Safety 113, 133–144 (2015)

    Google Scholar 

  126. D.K. Tripathi, V.P. Singh, S.M. Prasad, N.K. Dubey, D.K. Chauhan, A.K. Rai, LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings. J. Photochem. Photobiol. B Biol. 154, 89–98 (2016)

    Article  Google Scholar 

  127. B. Sezer, G. Bilge, A. Berkkan, U. Tamer, I. Hakki Boyaci, A rapid tool for determination of titanium dioxide content in white chickpea samples. Food Chem. 240, 84–89 (2018)

    Article  Google Scholar 

  128. D. Jaiswal, P.K. Rai, G. Watal, Hypoglycemic and antidiabetic effects of withania coagulans fruit ethanolic extract in normal and streptozotocin-induced diabetic rats. J. Food Biochem. 34, 764–778 (2010)

    Google Scholar 

  129. D. Jaiswal, P.K. Rai, G. Watal, Antidiabetic effect of Withania coagulans in experimental rats. Indian J. Clin. Biochem. 24, 88–93 (2009)

    Article  Google Scholar 

  130. A. Uhl, K. Loebe, L. Kreuchwig, Fast analysis of wood preservers using laser induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 56, 795–806 (2001)

    Article  Google Scholar 

  131. T.M. Moskal, D.W. Hahn, On-line sorting of wood treated with chromated copper arsenate using laser-induced breakdown spectroscopy. Appl. Spectrosc. 56, 1337–1344 (2002)

    Article  Google Scholar 

  132. H.M. Solo-Gabriele, T.G. Townsend, D.W. Hahn, T.M. Moskal, N. Hosein, J. Jambeck, G. Jacobi, Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste. Waste Manag 24, 413–424 (2004)

    Article  Google Scholar 

  133. M.Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S.D. Wullschleger, A.A. Vass, High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications. Spectrochim. Acta Part B Atomic Spectrosc. 62, 1426–1432 (2007)

    Article  Google Scholar 

  134. B.A. Gething, J.J. Janowiak, R.H. Falk, Assessment of laser induced breakdown spectroscopy (LIBS) for classification of preservative in CCA-treated lumber. Forest Prod. J. 59, 67–74 (2009)

    Article  Google Scholar 

  135. M.Z. Martin, N. Labbé, T.G. Rials, S.D. Wullschleger, Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra. Spectrochim. Acta Part B Atomic Spectrosc. 60, 1179–1185 (2005)

    Article  Google Scholar 

  136. D.M. Silvestre, F.M. Barbosa, B.T. Aguiar, F.O. Leme, C.S. Nomura, Feasibility study of calibration strategy for direct quantitative measurement of K and Mg in plant material by laser-induced breakdown spectrometry. Anal. Chem. Res. 5, 28–33 (2015)

    Article  Google Scholar 

  137. H. Jull, R. Künnemeyer, P. Schaare, Nutrient detection in fresh and dried pasture using laser-induced breakdown spectroscopy. Precis. Agric. (2018)

    Google Scholar 

  138. H. Jull, R. Künnemeyer, S. Talele, P. Schaare, M. Seelye, Laser-induced breakdown spectroscopy analysis of sodium in pelletised pasture samples, in 2015 6th International Conference on Automation, Robotics and Applications (ICARA) (2015), pp. 262–268

    Google Scholar 

  139. R. Bro, Multivariate calibration: what is in chemometrics for the analytical chemist? Anal. Chim. Acta 500, 185–194 (2003)

    Article  Google Scholar 

  140. A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964)

    Article  Google Scholar 

  141. T. Næs, T. Isaksson, T. Fearn, T. Davies, A User-Friendly Guide to Multivariate Calibration and Classification (NIR publications, Chichester, UK, 2002)

    Google Scholar 

  142. H. Fink, U. Panne, R. Niessner, Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy. Anal. Chem. 74, 4334–4342 (2002)

    Article  Google Scholar 

  143. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (University Press Group Limited, 2006)

    Google Scholar 

  144. C. Borggaard, H.H. Thodberg, Optimal minimal neural interpretation of spectra. Anal. Chem. 64, 545–551 (1992)

    Article  Google Scholar 

  145. P.J. Gemperline, J.R. Long, V.G. Gregoriou, Nonlinear multivariate calibration using principal components regression and artificial neural networks. Anal. Chem. 63, 2313–2323 (1991)

    Article  Google Scholar 

  146. I.H. Witten, E. Frank, M.A. Hall, Chapter 5—credibility: evaluating what’s been learned, in Data Mining: Practical Machine Learning Tools and Techniques (Third Edition) (Morgan Kaufmann, Boston, 2011), pp. 147–187

    Google Scholar 

  147. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, Montreal, Quebec, Canada (1995)

    Google Scholar 

  148. I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. (Morgan Kaufmann, Boston, USA, 2011)

    Google Scholar 

  149. D. Cremers, L. Radziemski, Chemometric analysis in LIBS, in Handbook of Laser-Induced Breakdown Spectroscopy, 2nd edn. (Wiley, West Sussex, UK, 2013), pp. 223–255

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge and offer continuing respect and admiration to deceased colleague Dr. Sadhana Talele, who was not able to see this work completed. This work was supported by New Zealand’s Ministry of Business, Innovation and Employment under contract C11X1209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jull, H., Künnemeyer, R., Schaare, P. (2019). Considerations Needed for Sensing Mineral Nutrient Levels in Pasture Using a Benchtop Laser-Induced Breakdown Spectroscopy System. In: Mukhopadhyay, S., Jayasundera, K., Postolache, O. (eds) Modern Sensing Technologies . Smart Sensors, Measurement and Instrumentation, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-99540-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99540-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99539-7

  • Online ISBN: 978-3-319-99540-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics