Skip to main content

Sparse 3D Point-Cloud Map Upsampling and Noise Removal as a vSLAM Post-Processing Step: Experimental Evaluation

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11097))

Included in the following conference series:

Abstract

The monocular vision-based simultaneous localization and mapping (vSLAM) is one of the most challenging problem in mobile robotics and computer vision. In this work we study the post-processing techniques applied to sparse 3D point-cloud maps, obtained by feature-based vSLAM algorithms. Map post-processing is split into 2 major steps: (1) noise and outlier removal and (2) upsampling. We evaluate different combinations of known algorithms for outlier removing and upsampling on datasets of real indoor and outdoor environments and identify the most promising combination. We further use it to convert a point-cloud map, obtained by the real UAV performing indoor flight to 3D voxel grid (octo-map) potentially suitable for path planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of simplicity we assume that the image is grayscale and pixels are real numbers.

  2. 2.

    https://github.com/raulmur/ORB_SLAM2

References

  1. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.: Past, present, and future of simultaneous localization and mapping: towards the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  2. Balan, A., Flaks, J., Hodges, S., Isard, M., Williams, O., Barham, P., Izadi, S., Hiliges, O., Molyneaux, D., Kim, D., et al.: Distributed asynchronous localization and mapping for augmented reality, January 13 2015. US Patent 8,933,931

    Google Scholar 

  3. Li, R., Liu, J., Zhang, L., Hang, Y.: LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments. In: 2014 DGON Inertial Sensors and Systems Symposium (ISS), pp. 1–15. IEEE (2014)

    Google Scholar 

  4. Leonard, J.J., Bahr, A.: Autonomous underwater vehicle navigation. In: Dhanak, M.R., Xiros, N.I. (eds.) Springer Handbook of Ocean Engineering, pp. 341–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-16649-0_14

    Chapter  Google Scholar 

  5. Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based odometry and SLAM for medium and high altitude flying UAVs. J. Intell. Robot. Syst. 54(1–3), 137–161 (2009)

    Article  Google Scholar 

  6. Sazdovski, V., Silson, P.M.: Inertial navigation aided by vision-based simultaneous localization and mapping. IEEE Sens. J. 11(8), 1646–1656 (2011)

    Article  Google Scholar 

  7. Vu, Q., Nguyen, V., Solenaya, O., Ronzhin, A., Mehmet, H.: Algorithms for joint operation of service robotic platform and set of UAVs in agriculture tasks. In: 2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), pp. 1–6. IEEE (2017)

    Google Scholar 

  8. Buyval, A., Afanasyev, I., Magid, E.: Comparative analysis of ROS-based monocular SLAM methods for indoor navigation. In: Proceedings of the Ninth International Conference on Machine Vision (ICMV 2016), pp. 10341–10341 (2017). https://doi.org/10.1117/12.2268809

  9. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 IEEE international conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  10. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  11. Bokovoy, A., Yakovlev, K.: Enhancing semi-dense monocular vSLAM used for multi-rotor UAV navigation in indoor environment by fusing IMU data. In: The 2018 International Conference on Artificial Life and Robotics (ICAROB 2018), pp. 391–394. ALife Robotics Corporation Ltd. (2018)

    Google Scholar 

  12. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense tracking and mapping in real-time. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327. IEEE (2011)

    Google Scholar 

  13. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction. arXiv preprint arXiv:1704.03489 (2017)

  14. Makarov, I., Aliev, V., Gerasimova, O.: Semi-dense depth interpolation using deep convolutional neural networks. In: Proceedings of the 2017 ACM on Multimedia Conference, MM 2017, pp. 1407–1415. ACM, New York (2017)

    Google Scholar 

  15. Yakovlev, K., Baskin, E., Hramoin, I.: Grid-based angle-constrained path planning. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 208–221. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24489-1_16

    Chapter  Google Scholar 

  16. Magid, E., Tsubouchi, T., Koyanagi, E., Yoshida, T.: Building a search tree for a pilot system of a rescue search robot in a discretized random step environment. J. Robot. Mechatron. 23(4), 567 (2011)

    Article  Google Scholar 

  17. Makarov, I., Polyakov, P.: Smoothing voronoi-based path with minimized length and visibility using composite bezier curves. In: AIST (Supplement), pp. 191–202 (2016)

    Google Scholar 

  18. Buyval, A., Gabdulin, A., Mustafin, R., Shimchik, I.: Deriving overtaking strategy from nonlinear model predictive control for a race car. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017), pp. 2623–2628, September 2017

    Google Scholar 

  19. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. Robot. (2017)

    Google Scholar 

  20. Kitti vision benchmark suite. http://www.cvlibs.net/datasets/kitti/eval_odometry.php. Accessed 22 Aug 2018

  21. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3d mapping framework based on octrees. Autonom. Robots 34(3), 189–206 (2013)

    Article  Google Scholar 

  22. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3D point cloud based object maps for household environments. Robot. Autonom. Syst. 56(11), 927–941 (2008)

    Article  Google Scholar 

  23. Reuter, P., Joyot, P., Trunzler, J., Boubekeur, T., Schlick, C.: Surface reconstruction with enriched reproducing kernel particle approximation. In: Eurographics/IEEE VGTC Symposium Proceedings on Point-Based Graphics 2005, pp. 79–87. IEEE (2005)

    Google Scholar 

  24. Skinner, B., Vidal Calleja, T., Valls Miro, J., De Bruijn, F., Falque, R.: 3D point cloud upsampling for accurate reconstruction of dense 2.5 D thickness maps. In: Australasian Conference on Robotics and Automation (2014)

    Google Scholar 

  25. Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)

    Google Scholar 

  26. Huitl, R., Schroth, G., Hilsenbeck, S., Schweiger, F., Steinbach, E.: TUMindoor: an extensive image and point cloud dataset for visual indoor localization and mapping. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 1773–1776. IEEE (2012)

    Google Scholar 

  27. Blanco, J.L., Moreno, F.A., Gonzalez, J.: A collection of outdoor robotic datasets with centimeter-accuracy ground truth. Autonom. Robots 27(4), 327 (2009)

    Article  Google Scholar 

  28. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580. IEEE (2012)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the “RUDN University Program 5-100” and by the RFBR project No. 17-29-07053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Bokovoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bokovoy, A., Yakovlev, K. (2018). Sparse 3D Point-Cloud Map Upsampling and Noise Removal as a vSLAM Post-Processing Step: Experimental Evaluation. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2018. Lecture Notes in Computer Science(), vol 11097. Springer, Cham. https://doi.org/10.1007/978-3-319-99582-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99582-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99581-6

  • Online ISBN: 978-3-319-99582-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics