Skip to main content

Drug Absorption

  • Chapter
  • First Online:
ADME Processes in Pharmaceutical Sciences

Abstract

Drug absorption is essential for a systemic medication to elicit its pharmacological response. The extent and rate of drug absorption have a direct impact on drug bioavailability. Here, we describe the key factors influencing drug absorption, the main mechanisms of drug absorption, and the most common models used to describe absorption kinetics. Examples and case studies are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Mohizea A, Zawaneh F, Alam MA et al (2014) Effect of pharmaceutical excipients on the permeability of p-glycoprotein substrate. J Drug Deliv Sci Technol 24:491–495

    Article  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J et al (2002) In: Alberts B, Johnson A, Lewis J et al (eds) Membrane structure. Garland Science, New York

    Google Scholar 

  • Arulanantham N, Lee RW, Hayton T (2014) Lesson of the month 2: a case of coma in a Parkinson's patient: a combination of fatigue, dehydration and high protein diet over the new year period? Clin Med (Lond) 14:449–451

    Article  Google Scholar 

  • Barichella M, Cereda E, Cassani E et al (2017) Dietary habits and neurological features of Parkinson’s disease patients: implications for practice. Clin Nutr 36:1054–1061

    Article  Google Scholar 

  • Bazzoni G (2006) Endothelial tight junctions: permeable barriers of the vessel wall. Thromb Haemost 95:36–42

    Article  CAS  Google Scholar 

  • Broër S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  Google Scholar 

  • Falcon RW, Kakuda TN (2008) Drug interactions between HIV protease inhibitors and acid-reducing agents. Clin Pharmacokinet 47:75–89

    Article  CAS  Google Scholar 

  • González-Mariscal L, Betanzos A, Nava P et al (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    Article  Google Scholar 

  • González-Mariscal L, Posadas Y, Miranda J et al (2017) Strategies that target tight junctions for enhanced drug delivery. Curr Pharm Des 22:5313–5346

    Article  Google Scholar 

  • Hodaei D, Baradaran B, Valizadeh H et al (2014) The effect of tween excipients on expression and activity of p-glycoprotein in Caco-2 cells. Pharm Ind 76:788–794

    CAS  Google Scholar 

  • Johansson MEV, Sjövall H, Hansson GC et al (2013) The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 10:5352–5361

    Article  Google Scholar 

  • Lewis JM, Stott KE, Monnery D et al (2016) Managing potential drug-drug interactions between gastric acid-reducing agents and antiretroviral therapy: experience from a large HIV-positive cohort. Int J STD AIDS 27:105–109

    Article  CAS  Google Scholar 

  • Panitchob N, Widdows IP, Crocker MA et al (2015) Computational modelling of amino acid exchange and facilitated transport in placental membrane vesicles. J Theor Biol 365:352–364

    Article  CAS  Google Scholar 

  • Sobue S, Sekiguchi K, Kikkawa H et al (2006) Comparison of nicotine pharmacokinetics in healthy Japanese male smokers following application of the transdermal nicotine patch and cigarette smoking. Biol Pharm Bull 29:1068–1073

    Article  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  Google Scholar 

  • Sultatos L (2011) In: Enna SJ, Bylund DB (eds) Drug absorption from the gastrointestinal tract. Elsevier, Boston, pp 1–2

    Google Scholar 

  • Tompkins L, Lynch C, Haidar S et al (2010) Effects of commonly used excipients on the expression of CYP3A4 in colon and liver cells. Pharm Res 27:1703–1712

    Article  CAS  Google Scholar 

  • Tomilo DL, Smith PF, Ogundele AB et al (2006) Inhibition of atazanavir oral absorption by lansoprazole gastric acid suppression in healthy volunteers. Pharmacotherapy 26:341–346

    Article  CAS  Google Scholar 

  • Van Itallie CM, Anderson JM (2004) The molecular physiology of tight junction pores. Physiology (Bethesda) 19:331–338

    Google Scholar 

  • Wang L, Xiong N, Huang J et al (2017) Protein-restricted diets for ameliorating motor fluctuations in Parkinson’s disease. Front Aging Neurosci 9:206

    Article  Google Scholar 

Further Reading

  • The reader is referred to the wonderful volume by Carsten Ehrhardt and Kwan-Jin Kim for additional insight on the absorption process with a focus on experimental and computational models of absorption (Drug Absorption Studies. In Situ, In Vitro and In Silico models, Springer, 2008). The Molecular Biopharmaceutics volume by Bente Steffansen et al. is also highly recommended to study experimental models of drug absorption (Molecular Biopharmaceutics, Pharmaceutical Press, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talevi, A., Bellera, C.L. (2018). Drug Absorption. In: Talevi, A., Quiroga, P. (eds) ADME Processes in Pharmaceutical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99593-9_2

Download citation

Publish with us

Policies and ethics