Skip to main content

Role of PGPR in the Phytoremediation of Heavy Metals and Crop Growth Under Municipal Wastewater Irrigation

  • Chapter
  • First Online:
Phytoremediation

Abstract

The use of wastewater for crop growth is a centuries-old practice that gets renewed attention with the rising shortage of freshwater resources in many arid and semiarid regions of the world. Wastewater is extensively used as an inexpensive substitute to conservative irrigation water: supporting livelihoods and generating significant value to the agriculture of urban and peri-urban areas. Many microorganisms are known to inhabit soil, especially rhizosphere, and play an important role in plant development and in remediation of heavy metals. Microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization, and redox changes. Nanoparticles play a key role in plant growth and development and in the phytoremediation when applied alone or in combination with PGPR. The combined effect of rhizobacteria and Ag nanoparticles in bioremediation has been reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    Article  CAS  PubMed  Google Scholar 

  2. Prasad SM, Singh A (2011) Metabolic responses of Azolla pinnata to cadmium stress: photosynthesis, antioxidative system and phytoremediation. Chem Ecol 27(6):543–555

    Article  CAS  Google Scholar 

  3. Vithanage M, Dabrowska BB, Mukherjee AB, Sandhi A, Bhattacharya P (2012) Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett 10(3):217–224

    Article  CAS  Google Scholar 

  4. Mench M, Schwitzguébel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16(7):876

    Article  CAS  Google Scholar 

  5. Aken BV, Correa PA, Schnoor JL (2009) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776

    Article  Google Scholar 

  6. Prasad MN (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50(5):686–701

    Article  CAS  Google Scholar 

  7. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  8. Ji P, Sun T, Song Y, Ackland ML, Liu Y (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut 159(3):762–768

    Article  CAS  PubMed  Google Scholar 

  9. Favas PJ, Pratas J, Varun M, D’Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Sci Total Environ 470:993–1002

    Article  PubMed  Google Scholar 

  10. Erakhrumen AA (2014) Potentials of Rhizophora racemosa for bio-indication and dendroremediation of heavy metal contamination in a mangrove forest, Ondo state, Nigeria. Nig J Agric Food Environ 10(4):1–5

    Google Scholar 

  11. Ghosh M, Singh S (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18

    Google Scholar 

  12. Sharma RK, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66(2):258–266

    Article  CAS  Google Scholar 

  13. Pedrero F, Kalavrouziotis I, Alarcón JJ, Koukoulakis P, Asano T (2010) Use of treated municipal wastewater in irrigated agriculture—review of some practices in Spain and Greece. Agric Water Manag 97(9):1233–1241

    Article  Google Scholar 

  14. Reiss R, Mackay N, Habig C, Griffin J (2002) An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ Toxicol Chem 21(11):2483–2492

    Article  CAS  PubMed  Google Scholar 

  15. Back DD, Scaringe RP, Ramos C, Samad NA, Gann Sr SD, inventors; Mainstream Engineering Corporation, assignee (1999) Process and system for recycling and reusing gray water. United States patent US 5,868,937, 9 Feb 1999

    Google Scholar 

  16. Wu CD, Wei GX (2002) Tea as a functional food for oral health. Nutrition 18(5):443–444

    Article  CAS  PubMed  Google Scholar 

  17. Otterpohl R, Braun U, Oldenburg M (2004) Innovative technologies for decentralised water-, wastewater and biowaste management in urban and peri-urban areas. Water Sci Technol 48(11–12):23–32

    Article  Google Scholar 

  18. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interf Sci 193:24–34

    Article  Google Scholar 

  19. Gerba CP, Smith JE Jr (2005) Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual 34(1):42

    CAS  PubMed  Google Scholar 

  20. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  21. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11–12):1857–1862

    Article  CAS  Google Scholar 

  22. Mapanda F, Mangwayana EN, Nyamangara J, Giller KE (2005) The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agric Ecosyst Environ 107(2):151–165

    Article  CAS  Google Scholar 

  23. Okoh AI, Odjadjare EE, Igbinosa EO, Osode AN (2007) Wastewater treatment plants as a source of microbial pathogens in receiving watersheds. Afr J Biotechnol 6(25)

    Google Scholar 

  24. Elimelech M (2006) The global challenge for adequate and safe water. J Water Supply Res Technol AQUA 55(1):3–10

    Article  Google Scholar 

  25. Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA (2018) UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ. https://doi.org/10.1111/pce.13195

    Article  Google Scholar 

  26. Jiménez B, Asano T (eds) (2008) Water reuse: an international survey of current practice, issues and needs. IWA, London

    Google Scholar 

  27. Pearce P (2004) Trickling filters for upgrading low technology wastewater plants for nitrogen removal. Water Sci Technol 49(11–12):47–52

    Article  CAS  PubMed  Google Scholar 

  28. Buechler S, Mekala GD, Keraita B (2006) Wastewater use for urban and peri-urban agriculture. In: van Veenhuizen R (ed) Cities farming for the future: urban agriculture for green and productive cities. RUAF Foundation, The Netherlands, pp 243–273

    Google Scholar 

  29. Drechsel P, Keraita B, Amoah P, Abaidoo RC, Raschid-Sally L, Bahri A (2008) Reducing health risks from wastewater use in urban and peri-urban sub-Saharan Africa: applying the 2006 WHO guidelines. Water Sci Technol 57(9):1461–1466

    Article  CAS  PubMed  Google Scholar 

  30. Das DC, Kaul RN (1992) Greening wastelands through wastewater. National Wasteland Development Board, Ministry of Environment and Forest, Government of India, New Delhi

    Google Scholar 

  31. Smit J, Nasr J, Ratta A (1996) Urban agriculture: food, jobs and sustainable cities, vol 2. The Urban Agriculture Network, Inc., New York, pp 35–37

    Google Scholar 

  32. Safary S, Hajrasoliha S (1995) Effects of North Isfahan sewage effluent on the soils of Borkhar region and composition of alfalfa. Paper presented at the 5th Soil Science Congress. Agricultural Vocational School, Karaj, Iran

    Google Scholar 

  33. Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manag 3(1). https://doi.org/10.1094/CM-2004-0301-05-RV

    Article  Google Scholar 

  34. Mehboob I, Naveed M, Zahir ZA, Ashraf M (2012) Potential of rhizobia for sustainable production of non-legumes. In: Ashraf M, Öztürk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer, Netherlands, pp 659–704

    Chapter  Google Scholar 

  35. Lemanceau P (1992) Beneficial effects of rhizobacteria on plants: example of fluorescent Pseudomonas spp.[plant growth promoting rhizobacteria, PGPR, microbial antagonism, siderophore, bacterial inoculation]. Agronomie. http://agris.fao.org/agris-search/search.do?recordID=FR19930008630

  36. Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12(4):133–141

    Article  CAS  Google Scholar 

  37. Zhang S, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25(3):288–296

    Article  Google Scholar 

  38. Liu WT, Nakamura K, Matsuo T, Mino T (1997) Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors—effect of PC feeding ratio. Water Res 31(6):1430–1438

    Article  CAS  Google Scholar 

  39. Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184(2):311–321

    Article  CAS  Google Scholar 

  40. Boddey RM, Urquiaga S, Alves BJ, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252(1):139–149

    Article  CAS  Google Scholar 

  41. Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224

    Article  CAS  Google Scholar 

  42. Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    Article  CAS  PubMed  Google Scholar 

  43. Aafi NE, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. Int J Phytoremediation 14(3):261–274

    Article  PubMed  Google Scholar 

  44. Rajkumar M, Vara Prasad MN, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol 29(2):120–130

    Article  CAS  PubMed  Google Scholar 

  45. Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants-a review. Afr J Food Sci 4(5):200–222

    CAS  Google Scholar 

  46. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  47. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  CAS  PubMed  Google Scholar 

  48. Masalha J, Kosegarten H, Elmaci Ö, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30(5):433–439

    Article  CAS  Google Scholar 

  49. Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50(6):847–853

    Article  CAS  PubMed  Google Scholar 

  50. Khan N, Bano A (2016) Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int J Phytoremediation 18(12):1258–1269

    Article  CAS  PubMed  Google Scholar 

  51. Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chibuike G, Obiora S (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. https://doi.org/10.1155/2014/752708

    Article  Google Scholar 

  53. Nanda S, Abraham J (2013) Remediation of heavy metal contaminated soil. Afr J Biotechnol 12(21)

    Google Scholar 

  54. Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  55. Khan N, Bano A, Babar MA (2017) The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis 72(3):195–205

    Article  CAS  Google Scholar 

  56. Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78

    Article  Google Scholar 

  57. Rufykiri G, Thiry Y, Wang L, Delvaux B, Declerck S (2002) Uranium uptake and translocation by the arbuscular fungus, Glomus intraradices, under root-organ culture conditions. New Phytol 156(2):275–281

    Article  Google Scholar 

  58. Pozo MJ, Cordier C, Dumas-Gaudot E (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53(368):525–534

    Article  CAS  PubMed  Google Scholar 

  59. Abu-Elsaoud AM, Nafady NA, Abdel-Azeem AM (2017) Arbuscular mycorrhizal strategy for zinc mycoremediation and diminished translocation to shoots and grains in wheat. PLoS One 12(11):e0188220

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:15–28

    Article  Google Scholar 

  61. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  62. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  CAS  PubMed  Google Scholar 

  63. Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food 15(2):22–44

    Google Scholar 

  64. Hu Y, Xie J, Tong YW, Wang CH (2007) Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Control Release 118(1):7–17

    Article  CAS  PubMed  Google Scholar 

  65. Caruthers SD, Wickline SA, Lanza GM (2007) Nanotechnological applications in medicine. CurrOpinBiotechnol 18:26–30

    CAS  Google Scholar 

  66. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    Google Scholar 

  67. Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15(1):1417

    Article  Google Scholar 

  68. Da Silva EC, Da Silva MGA, Meneghetti SMP, Machado G, Alencar MARC, Hickmann JM, Meneghetti MR (2008) Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J Nanopart Res 10(1):201–208

    Article  Google Scholar 

  69. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104

    Article  Google Scholar 

  70. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  71. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  72. Nair R (2016) Effects of nanoparticles on plant growth and development. In: Kole C, Kumar D, Khodakovskaya M (eds) Plant nanotechnology. Springer, Cham

    Google Scholar 

  73. Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6(2):254

    PubMed  PubMed Central  Google Scholar 

  74. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310. https://doi.org/10.1007/s10725-011-9649-z

    Article  CAS  Google Scholar 

  75. Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci 7:90

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanoparticles. https://doi.org/10.1155/2014/431787

    Article  Google Scholar 

  77. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. https://doi.org/10.1155/2014/825910

    Article  Google Scholar 

  78. Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296(1–2):1–8

    Article  CAS  Google Scholar 

  79. Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CMR (2017) Silver nanoparticles uptake by salt marsh plants–implications for phytoremediation processes and effects in microbial community dynamics. Mar Pollut Bull 119(1):176–183

    Article  CAS  PubMed  Google Scholar 

  80. Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757

    CAS  Google Scholar 

  81. Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediation 15(2):142–153

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, N., Bano, A. (2018). Role of PGPR in the Phytoremediation of Heavy Metals and Crop Growth Under Municipal Wastewater Irrigation. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-99651-6_5

Download citation

Publish with us

Policies and ethics