Skip to main content

Study of Obstacle Avoidance Strategies for Efficient Autonomous Navigation of Wheeled Robots in Unknown Environments

  • Conference paper
  • First Online:
Advances in Physical Agents (WAF 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 855))

Included in the following conference series:

  • 425 Accesses

Abstract

This paper studied several obstacle avoidance strategies proposed within recent state of the art for autonomous navigation of wheeled robots to efficiently deal with unknown environment. Some initial experiments have been performed in this paper to identify the most important features, (e.g., obstacle representation, efficient control of robot’s direction, etc.) that an obstacle avoidance strategy must include in order to guarantee an effective autonomous navigation system for wheeled robots in unknown environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ode.org/.

  2. 2.

    http://www.velodynelidar.com/hdl-64e.html.

  3. 3.

    https://youtu.be/kRPXGi47m-o.

References

  1. Mujahed, M., Fischer, D., Mertsching, B.: Admissible gap navigation: a new collision avoidance approach. Robot. Auton. Syst. 103, 93–110 (2018). https://doi.org/10.1016/j.robot.2018.02.008

    Article  Google Scholar 

  2. Wang, C., Meng, L., She, S., Mitchell, I.M., Li, T., Tung, F., Wan, W., Meng, M.Q.H., de Silva, C.W.: Autonomous mobile robot navigation in uneven and unstructured indoor environments. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 109–116 (2017). https://doi.org/10.1109/IROS.2017.8202145

  3. Minguez, J., Montano, L.: Extending collision avoidance methods to consider the vehicle shape, kinematics, and dynamics of a mobile robot. IEEE Trans. Robot. 25(2), 367–381 (2009). https://doi.org/10.1109/TRO.2009.2011526

    Article  Google Scholar 

  4. Pothal, J.K., Parhi, D.R.: Navigation of multiple mobile robots in a highly clutter terrains using adaptive neuro-fuzzy inference system. Robot. Auton. Syst. 72, 48–58 (2015). https://doi.org/10.1016/j.robot.2015.04.007

    Article  Google Scholar 

  5. Antich Tobaruela, J., Ortiz, R.A.: Reactive navigation in extremely dense and highly intricate environments. PLoS ONE 12(12), e0189008 (2017). https://doi.org/10.1371/journal.pone.0189008

    Article  Google Scholar 

  6. Duguleana, M., Mogan, G.: Neural networks based reinforcement learning for mobile robots obstacle avoidance. Expert. Syst. Appl. 62, 104–115 (2016). https://doi.org/10.1016/j.eswa.2016.06.021

    Article  Google Scholar 

  7. Xia, C., El Kamel, A.: Neural inverse reinforcement learning in autonomous navigation. Robot. Auton. Syst. 84, 1–14 (2016). https://doi.org/10.1016/j.robot.2016.06.003

    Article  Google Scholar 

  8. Asvadi, A., Premebida, C., Peixoto, P., Nunes, U.: 3D Lidar-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes. Robot. Auton. Syst. 83, 299–311 (2016). https://doi.org/10.1016/j.robot.2016.06.007

    Article  Google Scholar 

  9. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34, 189–206 (2013). https://doi.org/10.1007/s10514-012-9321-0

    Article  Google Scholar 

  10. LMS291 datasheet. https://cdn.sick.com/media/pdf/9/49/849/dataSheet_LMS291-S05_1018028_es.pdf

  11. Michel, O.: Cyberbotics Ltd. Webots\(^{\rm {TM}}\): professional mobile robot simulation. Int. J. Adv. Rob. Syst. 1, 39–42 (2004)

    Google Scholar 

  12. Pioneer 3-AT datasheet. http://www.mobilerobots.com/Libraries/Downloads/Pioneer3AT-P3AT-RevA.sflb.ashx

  13. Schwiegelshohn, F., Wehner, P., Werner, F., Gohringer, D., Hubner, M.: Enabling indoor object localization through Bluetooth beacons on the RADIO robot platform. In: 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), Agios Konstantinos, pp. 328–333 (2016). https://doi.org/10.1109/SAMOS.2016.7818366

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Cristiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cristiano, J., Rashwan, H.A., Puig, D. (2019). Study of Obstacle Avoidance Strategies for Efficient Autonomous Navigation of Wheeled Robots in Unknown Environments. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-5_4

Download citation

Publish with us

Policies and ethics