Skip to main content

Clinical Trials in IPF: What Are the Best Endpoints?

  • Chapter
  • First Online:
Idiopathic Pulmonary Fibrosis

Part of the book series: Respiratory Medicine ((RM))

Abstract

Idiopathic pulmonary fibrosis (IPF), the most common and lethal of all chronic idiopathic interstitial pneumonias, is a disease that is rare and is still regarded as an orphan condition. Indeed, in the last decade more than 3000 patients have been enrolled in high-quality clinical trials of IPF, an impressive achievement for a rare condition. The most challenging obstacle in clinical trials of orphan drugs is the recruitment of an adequate number of patients to obtain sufficient evidence of efficacy and safety. Similarly critical, if not more so, is the choice of the appropriate primary endpoint(s). In disorders with a poor prognosis – like IPF – survival is the most logical outcome to measure the efficacy of a given drug. However, such trial design is feasible only in diseases that are fairly common and have a short survival with no treatment already approved. When a mortality study is impracticable, an alternative approach involves the use of predictors of survival.

There is a general agreement that the ideal primary endpoint should be reliable, reproducible, clinically meaningful, predictive of outcome, responsive to treatment effect, equally applicable to all patients, and easy to measure. However, none of the outcomes utilized over the last decade of clinical trials of IPF meets all these criteria. More attention is currently paid by physicians and regulators to endpoints that are meaningful to patients even on a short-term basis, including symptoms and quality of life measurements. In this chapter we carefully analyze the pros and cons of the outcomes most commonly used in pharmacological studies of IPF and suggest that the choice of the appropriate primary endpoint should balance scientific, statistical, and clinical rigor as well as clinical trial feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389:1941–52.

    Article  PubMed  Google Scholar 

  2. Martinez FJ, Safrin S, Weycker D, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005;142:963–7.

    Article  PubMed  Google Scholar 

  3. Kistler KD, Nalysnyk L, Rotella P, Esser D. Lung transplantation in idiopathic pulmonary fibrosis: a systematic review of the literature. BMC Pulm Med. 2014;14:139.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Azuma A, Nukiwa T, Tsuboi E, et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2005;171:1040–7.

    Article  PubMed  Google Scholar 

  5. Taniguchi H, Ebina M, Kondoh Y, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35:821–9.

    Article  CAS  PubMed  Google Scholar 

  6. Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377:1760–9.

    Article  CAS  PubMed  Google Scholar 

  7. King TE Jr, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92.

    Article  PubMed  CAS  Google Scholar 

  8. Richeldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365:1079–87.

    Article  CAS  PubMed  Google Scholar 

  9. Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82.

    Article  PubMed  CAS  Google Scholar 

  10. Raghu G, Behr J, Brown KK. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med. 2013;158:641–9.

    Article  PubMed  Google Scholar 

  11. Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005;353:2229–42.

    Article  CAS  PubMed  Google Scholar 

  12. Idiopathic Pulmonary Fibrosis Clinical Research Network, Martinez FJ, de Andrade JA, Anstrom KJ, King TE Jr, Raghu G. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366:1968–77.

    Article  Google Scholar 

  13. King TE Jr, Behr J, Brown KK, et al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;177:75–81.

    Article  CAS  PubMed  Google Scholar 

  14. King TE Jr, Brown KK, Raghu G. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184:92–9.

    Article  PubMed  Google Scholar 

  15. Raghu G, Martinez FJ, Brown KK, et al. CC-chemokine ligand 2 inhibition in idiopathic pulmonary fibrosis: a phase 2 trial of carlumab. Eur Respir J. 2015;46:1740–50.

    Article  CAS  PubMed  Google Scholar 

  16. Shulgina L, Cahn AP, Chilvers ER, et al. Treating idiopathic pulmonary fibrosis with the addition of co-trimoxazole: a randomised controlled trial. Thorax. 2013;68:155–62.

    Article  PubMed  Google Scholar 

  17. Raghu G, Brown KK, Costabel U, et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med. 2008;178:948–55.

    Article  CAS  PubMed  Google Scholar 

  18. Malouf MA, Hopkins P, Snell G, Glanville AR. Everolimus in IPF study investigators. An investigator-driven study of everolimus in surgical lung biopsy confirmed idiopathic pulmonary fibrosis. Respirology. 2011;16:776–83.

    Article  PubMed  Google Scholar 

  19. Daniels CE, Lasky JA, Limper AH, et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010;181:604–10.

    Article  CAS  PubMed  Google Scholar 

  20. Raghu G, Brown KK, Bradford WZ. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2004;350:125–33.

    Article  CAS  PubMed  Google Scholar 

  21. King TE Jr, Albera C, Bradford WZ. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet. 2009;374:222–8.

    Article  CAS  PubMed  Google Scholar 

  22. Raghu G, Million-Rousseau R, Morganti A, Perchenet L, Behr J, MUSIC Study Group. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur Respir J. 2013;42:1622–32.

    Article  CAS  PubMed  Google Scholar 

  23. Idiopathic Pulmonary Fibrosis Clinical Research Network, Martinez FJ, de Andrade JA, Anstrom KJ, King TE Jr, Raghu G. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2093–3101.

    Article  CAS  Google Scholar 

  24. Raghu G, Scholand MB, de Andrade J, et al. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J. 2016;47:1481–91.

    Article  PubMed  Google Scholar 

  25. Idiopathic Pulmonary Fibrosis Clinical Research Network, Zisman DA, Schwarz M, Anstrom KJ, Collard HR, Flaherty KR, Hunninghake GW. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010;363:620–8.

    Article  Google Scholar 

  26. Raghu G, Brown KK, Collard HR, et al. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir Med. 2017;5:22–32.

    Article  CAS  PubMed  Google Scholar 

  27. Parker JM, Glaspole IN, Lancaster LH, et al. A phase 2 randomized controlled study of Tralokinumab in subjects with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2018;197:94–103.

    Article  CAS  PubMed  Google Scholar 

  28. Noth I, Anstrom KJ, Calvert SB, et al. A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186:88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karimi-Shah BA, Chowdhury BA. Forced vital capacity in idiopathic pulmonary fibrosis – FDA review of pirfenidone and nintedanib. N Engl J Med. 2015;372:1189–91.

    Article  PubMed  Google Scholar 

  30. Nathan SD, Meyer KC. IPF clinical trial design and endpoints. Curr Opin Pulm Med. 2014;20:463–71.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Raghu G, Collard HR, Anstrom KJ, et al. Idiopathic pulmonary fibrosis: clinically meaningful primary endpoints in phase 3 clinical trials. Am J Respir Crit Care Med. 2012;185:1044–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. King TE Jr, Albera C, Bradford WZ, et al. All-cause mortality rate in patients with idiopathic pulmonary fibrosis. Implications for the design and execution of clinical trials. Am J Respir Crit Care Med. 2014;189:825–31.

    Article  PubMed  Google Scholar 

  33. du Bois RM, Weycker D, Albera C, et al. Ascertainment of individual risk of mortality for patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184:459–66.

    Article  PubMed  Google Scholar 

  34. Flaherty KR, Mumford JA, Murray S, et al. Prognostic implications of physiologic and radiographic changes in idiopathic interstitial pneumonia. Am J Respir Crit Care Med. 2003;168:543–8.

    Article  PubMed  Google Scholar 

  35. Richeldi L, Ryerson CJ, Lee JS, et al. Relative versus absolute change in forced vital capacity in idiopathic pulmonary fibrosis. Thorax. 2012;67:407–11.

    Article  PubMed  Google Scholar 

  36. Zappala CJ, Latsi PI, Nicholson AG, et al. Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35:830–6.

    Article  CAS  PubMed  Google Scholar 

  37. Paterniti MO, Bi Y, Rekić D, et al. Acute exacerbation and decline in forced vital capacity are associated with increased mortality in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14:1395–402.

    Article  PubMed  Google Scholar 

  38. Latsi PI, du Bois RM, Nicholson AG, et al. Fibrotic idiopathic interstitial pneumonia: the prognostic value of longitudinal functional trends. Am J Respir Crit Care Med. 2003;168:531–7.

    Article  PubMed  Google Scholar 

  39. Collard HR, King TE Jr, Bartelson BB, et al. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2003;168:538–42.

    Article  PubMed  Google Scholar 

  40. King TE Jr, Safrin S, Starko KM, et al. Analyses of efficacy end points in a controlled trial of interferon-gamma1b for idiopathic pulmonary fibrosis. Chest. 2005;127:171–7.

    Article  CAS  PubMed  Google Scholar 

  41. Jegal Y, Kim DS, Shim TS, et al. Physiology is a stronger predictor of survival than pathology in fibrotic interstitial pneumonia. Am J Respir Crit Care Med. 2005;171:639–44.

    Article  PubMed  Google Scholar 

  42. Peelen L, Wells AU, Prijs M, et al. Fibrotic idiopathic interstitial pneumonias: mortality is linked to a decline in gas transfer. Respirology. 2010;15:1233–43.

    Article  PubMed  Google Scholar 

  43. Corte TJ, Wort SJ, Macdonald PS, et al. Pulmonary function vascular index predicts prognosis in idiopathic interstitial pneumonia. Respirology. 2012;17:674–80.

    Article  PubMed  Google Scholar 

  44. Schmidt SL, Nambiar AM, Tayob N, et al. Pulmonary function measures predict mortality differently in idiopathic pulmonary fibrosis versus combined pulmonary fibrosis and emphysema. Eur Respir J. 2011;38:176–83.

    Article  CAS  PubMed  Google Scholar 

  45. Ley B. Clarity on endpoints for clinical trials in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14:1383–4.

    Article  PubMed  Google Scholar 

  46. Podolanczuk AJ, Lederer DJ. Patient-centered outcomes in idiopathic pulmonary fibrosis clinical trials. Am J Respir Crit Care Med. 2017;196:674–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7.

    Google Scholar 

  48. Caminati A, Bianchi A, Cassandro R, et al. Walking distance on 6-MWT is a prognostic factor in idiopathic pulmonary fibrosis. Respir Med. 2009;103:117–23.

    Article  PubMed  Google Scholar 

  49. Chetta A, Aiello M, Foresi A, et al. Relationship between outcome measures of six-minute walk test and baseline lung function in patients with interstitial lung disease. Sarcoidosis Vasc Diffuse Lung Dis. 2001;18:170–5.

    CAS  PubMed  Google Scholar 

  50. Eaton T, Young P, Milne D, et al. Six-minute walk, maximal exercise tests: reproducibility in fibrotic interstitial pneumonia. Am J Respir Crit Care Med. 2005;171:1150–7.

    Article  PubMed  Google Scholar 

  51. Lederer DJ, Arcasoy SM, Wilt JS, et al. Six-minute-walk distance predicts waiting list survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2006;174:659–64.

    Article  PubMed  PubMed Central  Google Scholar 

  52. du Bois RM, Weycker D, Albera C, et al. Six-minute-walk test in idiopathic pulmonary fibrosis: test validation and minimal clinically important difference. Am J Respir Crit Care Med. 2011;183:1231–7.

    Article  PubMed  Google Scholar 

  53. Nathan SD, du Bois RM, Albera C, et al. Validation of test performance characteristics and minimal clinically important difference of the 6-minute walk test in patients with idiopathic pulmonary fibrosis. Respir Med. 2015;109:914–22.

    Article  PubMed  Google Scholar 

  54. Lama VN, Flaherty KR, Toews GB, et al. Prognostic value of desaturation during a 6-minute walk test in idiopathic interstitial pneumonia. Am J Respir Crit Care Med. 2003;168:1084–90.

    Article  PubMed  Google Scholar 

  55. Swigris JJ, Swick J, Wamboldt FS, et al. Heart rate recovery after 6-min walk test predicts survival in patients with idiopathic pulmonary fibrosis. Chest. 2009;136:841–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brown AW, Nathan SD. The value and application of the 6-minute-walk test in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2018;15:3–10.

    Article  PubMed  Google Scholar 

  57. Heresi GA, Dweik RA. Strengths and limitations of the six-minute-walk test: a model biomarker study in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183:1122–4.

    Article  PubMed  Google Scholar 

  58. Ley B, Swigris J, Day BM, et al. Pirfenidone reduces respiratory-related hospitalizations in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196:756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collard HR, Ryerson CJ, Corte TJ, et al. Acute exacerbation of idiopathic pulmonary fibrosis. An international working group report. Am J Respir Crit Care Med. 2016;194:265–75.

    Article  CAS  PubMed  Google Scholar 

  60. Collard HR, Richeldi L, Kim DS, et al. Acute exacerbations in the INPULSIS trials of nintedanib in idiopathic pulmonary fibrosis. Eur Respir J. 2017;49(5). pii: 1601339. https://doi.org/10.1183/13993003.01339-2016.

    Article  PubMed  Google Scholar 

  61. Collard HR, Moore BB, Flaherty KR, et al. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176:636–43.

    Article  PubMed  Google Scholar 

  62. de Andrade J, Schwarz M, Collard HR, et al. The idiopathic pulmonary fibrosis clinical research network (IPFnet) diagnostic and adjudication processes. Chest. 2015;148:1034–42.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183:431–40.

    Article  PubMed  Google Scholar 

  64. Nathan SD, Albera C, Bradford WZ, et al. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir Med. 2017;5:33–41.

    Article  CAS  PubMed  Google Scholar 

  65. Deshpande PR, Rajan S, Sudeepthi BL, Abdul Nazir CP. Patient-reported outcomes: a new era in clinical research. Perspect Clin Res. 2011;2:137–44.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George’s respiratory questionnaire. Am Rev Respir Dis. 1992;145:1321–7.

    Article  CAS  PubMed  Google Scholar 

  67. Swigris JJ, Esser D, Wilson H, et al. Psychometric properties of the St George’s respiratory questionnaire in patients with idiopathic pulmonary fibrosis. Eur Respir J. 2017;49(1). pii: 1601788. https://doi.org/10.1183/13993003.01788-2016.

    Article  Google Scholar 

  68. Furukawa T, Taniguchi H, Ando M, et al. The St. George’s respiratory questionnaire as a prognostic factor in IPF. Respir Res. 2017;18:18.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yorke J, Jones PW, Swigris JJ. Development and validity testing of an IPF-specific version of the St George’s respiratory questionnaire. Thorax. 2010;65:921–6.

    Article  PubMed  Google Scholar 

  70. Patel AS, Siegert RJ, Brignall K, et al. The development and validation of the King’s brief interstitial lung disease (K-BILD) health status questionnaire. Thorax. 2012;67:804–10.

    Article  PubMed  Google Scholar 

  71. Wapenaar M, Patel AS, Birring SS, et al. Translation and validation of the King’s brief interstitial lung disease (K-BILD) questionnaire in French, Italian, Swedish, and Dutch. Chron Respir Dis. 2017;14:140–50.

    Article  PubMed  Google Scholar 

  72. Swigris JJ, Wilson SR, Green KE, et al. Development of the ATAQ-IPF: a tool to assess quality of life in IPF. Health Qual Life Outcomes. 2010;8:77.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Matsuda T, Taniguchi H, Ando M, et al. COPD assessment test for measurement of health status in patients with idiopathic pulmonary fibrosis: a cross-sectional study. Respirology. 2017;22:721–7.

    Article  PubMed  Google Scholar 

  74. Ryerson CJ, Abbritti M, Ley B, et al. Cough predicts prognosis in idiopathic pulmonary fibrosis. Respirology. 2011;16:969–75.

    Article  PubMed  Google Scholar 

  75. van Manen MJ, Birring SS, Vancheri C, et al. Cough in idiopathic pulmonary fibrosis. Eur Respir Rev. 2016;25:278–86.

    Article  PubMed  Google Scholar 

  76. van Manen MJG, Birring SS, Vancheri C, et al. Effect of pirfenidone on cough in patients with idiopathic pulmonary fibrosis. Eur Respir J. 2017;50:1701157. https://doi.org/10.1183/13993003.01157-2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hansell DM, Goldin JG, King TE Jr, et al. CT staging and monitoring of fibrotic interstitial lung diseases in clinical practice and treatment trials: a position paper from the Fleischner society. Lancet Respir Med. 2015;3:483–96.

    Article  PubMed  Google Scholar 

  78. Kim EA, Johkoh T, Lee KS, et al. Interstitial pneumonia in progressive systemic sclerosis: serial high-resolution CT findings with functional correlation. J Comput Assist Tomogr. 2001;25:757–63.

    Article  CAS  PubMed  Google Scholar 

  79. Jeong YJ, Lee KS, Müller NL, et al. Usual interstitial pneumonia and non-specific interstitial pneumonia: serial thin-section CT findings correlated with pulmonary function. Korean J Radiol. 2005;6:143–52.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Iwasawa T, Ogura T, Sakai F, et al. CT analysis of the effect of pirfenidone in patients with idiopathic pulmonary fibrosis. Eur J Radiol. 2014;83:32–8.

    Article  PubMed  Google Scholar 

  81. Kim HJ, Li G, Gjertson D, et al. Classification of parenchymal abnormality in scleroderma lung using a novel approach to denoise images collected via a multicenter study. Acad Radiol. 2008;15:1004–16.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang Y, Kaminski N. Biomarkers in idiopathic pulmonary fibrosis. Curr Opin Pulm Med. 2012;18:441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Saini G, Porte J, Weinreb PH, et al. αvβ6 integrin may be a potential prognostic biomarker in interstitial lung disease. Eur Respir J. 2015;46:486–94.

    Article  PubMed  Google Scholar 

  84. Chien JW, Richards TJ, Gibson KF, et al. Serum lysyl oxidase-like 2 levels and idiopathic pulmonary fibrosis disease progression. Eur Respir J. 2014;43:1430–8.

    Article  CAS  PubMed  Google Scholar 

  85. Spagnolo P, Rossi G, Cavazza A. Pathogenesis of idiopathic pulmonary fibrosis and its clinical implications. Expert Rev Clin Immunol. 2014;10:1005–17.

    Article  CAS  PubMed  Google Scholar 

  86. Jenkins RG, Simpson JK, Saini G, et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir Med. 2015;3:462–72.

    Article  CAS  PubMed  Google Scholar 

  87. Maher TM, Oballa E, Simpson JK, et al. An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respir Med. 2017;5:946–55.

    Article  CAS  PubMed  Google Scholar 

  88. Herazo-Maya JD, Noth I, Duncan SR, et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl Med. 2013;5:205ra136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Herazo-Maya JD, Sun J, Molyneaux PL, et al. Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. Lancet Respir Med. 2017;5:857–68.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ferreira-González I, Permanyer-Miralda G, Busse JW, et al. Methodologic discussions for using and interpreting composite endpoints are limited, but still identify major concerns. J Clin Epidemiol. 2007;60:651–7.

    Article  PubMed  Google Scholar 

  91. Freemantle N, Calvert M, Wood J, Eastaugh J, Griffin C. Composite outcomes in randomized trials: greater precision but with greater uncertainty? JAMA. 2003;289:2554–9.

    Article  PubMed  Google Scholar 

  92. Ferreira-González I, Busse JW, Heels-Ansdell D, et al. Problems with use of composite end points in cardiovascular trials: systematic review of randomised controlled trials. BMJ. 2007;334:786.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Durheim MT, Collard HR, Roberts RS, et al. Association of hospital admission and forced vital capacity endpoints with survival in patients with idiopathic pulmonary fibrosis: analysis of a pooled cohort from three clinical trials. Lancet Respir Med. 2015;3:388–96.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wells AU, Desai SR, Rubens MB, et al. Idiopathic pulmonary fibrosis: a composite physiologic index derived from disease extent observed by computed tomography. Am J Respir Crit Care Med. 2003;167:962–9.

    Article  PubMed  Google Scholar 

  95. Ley B, Bradford WZ, Vittinghoff E, et al. Predictors of mortality poorly predict common measures of disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2016;194:711–8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Collard HR, Brown KK, Martinez FJ, et al. Study design implications of death and hospitalization as endpoints in idiopathic pulmonary fibrosis. Chest. 2014;146:1256–62.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ley B, Bradford WZ, Weycker D, et al. Unified baseline and longitudinal mortality prediction in idiopathic pulmonary fibrosis. Eur Respir J. 2015;45:1374–81.

    Article  PubMed  Google Scholar 

  98. O'Riordan TG, Smith V, Raghu G. Development of novel agents for idiopathic pulmonary fibrosis: progress in target selection and clinical trial design. Chest. 2015;148:1083–92.

    Article  PubMed  Google Scholar 

  99. Spagnolo P, Tzouvelekis A, Maher TM. Personalized medicine in idiopathic pulmonary fibrosis: facts and promises. Curr Opin Pulm Med. 2015;21:470–8.

    Article  CAS  PubMed  Google Scholar 

  100. Oldham JM, Ma SF, Martinez FJ, et al. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2015;192:1475–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Cottin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spagnolo, P., Cocconcelli, E., Cottin, V. (2019). Clinical Trials in IPF: What Are the Best Endpoints?. In: Meyer, K., Nathan, S. (eds) Idiopathic Pulmonary Fibrosis. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-99975-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99975-3_19

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-99974-6

  • Online ISBN: 978-3-319-99975-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics