Skip to main content

Abstract

The theory of the strong interaction of elementary particles, Quantum Chromodynamics (QCD), is a non-abelian gauge theory with SU(3) as gauge group. The degrees of freedom corresponding to this SU(3) are called colour. The quarks have besides the flavour also colour degrees of freedom and transform according to the fundamental representation of colour SU(3). The eight coloured gauge bosons are called gluons. The colour degree of freedom was introduced in Refs. [Gr64, Ha65, Ge72]. Coloured gluons were proposed by H. Fritzsch, M. Gell-Mann, and H. Leutwyler [Fr73]. The colour degree of freedom solved the following three puzzles of the quark model: the problems with the lifetime of the neutral π meson, the total hadronic cross section in e+e- annihilation, and the “wrong” quark statistics in the baryon bound states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Abrikosov, Sov. Phys. JETP 5 (1957) 1174.

    Google Scholar 

  2. P. Abreu et al. (DELPHI Coll.), Phys. Lett. B418 (1998) 430.

    ADS  Google Scholar 

  3. S.L. Adler and R.F. Dashen, Current Algebras and Applications to Particle Physics, Frontiers in physics Vol. 30, (W.A. Benjamin, Inc., New York, 1968).

    MATH  Google Scholar 

  4. S.Ø. Aks, J. Math. Phys. 6 (1965) 516.

    ADS  MathSciNet  Google Scholar 

  5. V. de Alfaro, S. Fubini, G. Furlan and C. Rossetti, Currents in Hadron Physics, (North Holland, Amsterdam, 1973).

    Google Scholar 

  6. G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298.

    ADS  Google Scholar 

  7. G. Altarelli and G. Martinelli, Phys. Lett. 76B (1978) 89.

    ADS  Google Scholar 

  8. G. Altarelli, R.K. Ellis and G. Martinelli, Nucl. Phys. B157 (1979) 461.

    ADS  Google Scholar 

  9. A. Ali et al., Phys. Lett. B82 (1979) 285 and

    ADS  Google Scholar 

  10. A. Ali et al., Nucl. Phys. B167 (1980) 454.

    ADS  Google Scholar 

  11. A. Ali, E. Pietarinen, G. Kramer and J. Willrodt, Phys. Lett. 93B (1980) 155.

    ADS  Google Scholar 

  12. C. Albajar et al. (UA1 Coll.), Phys. Lett. B198 (1987) 271.

    ADS  Google Scholar 

  13. G. Altarelli, R.B. Ball, St. Forte and G. Ridolfi, Nucl. Phys. B496 (1997) 337.

    ADS  Google Scholar 

  14. ALEPH Coll., CERN-OPEN-99-291, CERN-ALEPH-99-023.

    Google Scholar 

  15. D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B140 (1978) 54 and

    ADS  Google Scholar 

  16. D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B146 (1978) 29.

    ADS  Google Scholar 

  17. R. Ansari et al. (UA2 Coll.), Phys. Lett. B194 (1987) 158.

    ADS  Google Scholar 

  18. S. Aoki et al. (CP-PACS Coll.), Phys. Rev. Lett. 84 (2000) 238.

    ADS  Google Scholar 

  19. T. Appelquist and H. Georgi, Phys. Rev. D8 (1973) 4000.

    ADS  Google Scholar 

  20. H. Appelshauser et al. (NA49 Coll.), Phys. Lett. B459 (1999) 679.

    ADS  Google Scholar 

  21. M. Arnedo et al. (NMC Coll.), Nucl. Phys. B483 (1997) 3.

    ADS  Google Scholar 

  22. J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 106 (1957) 162 and

    ADS  MathSciNet  Google Scholar 

  23. J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108 (1957) 1175.

    MATH  ADS  MathSciNet  Google Scholar 

  24. W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Phys. Rev. D18 (1978) 3998.

    ADS  Google Scholar 

  25. G.S. Bali et al (UKQCD Coll.), Phys. Lett. B309 (1993) 378.

    ADS  Google Scholar 

  26. G.S. Bali, K. Schilling and C. Schlichter, Phys. Rev. D51 (1995) 5165.

    ADS  Google Scholar 

  27. M. Baker, N. Brambilla, H.G. Dosch and A. Vairo, Phys. Rev. D58 (1998) 034010.

    ADS  Google Scholar 

  28. G.S. Bali, K. Schilling and C. Schlichter, Prog. Theor. Phys. Suppl. 131 (1998) 645.

    ADS  Google Scholar 

  29. W. Bernreuther, Ann. Phys. 151 (1983) 127.

    ADS  Google Scholar 

  30. B. Betev et al., Z. Phys. C28 (1985) 9 and 15.

    ADS  Google Scholar 

  31. S. Bethke et al. (JADE Coll.), Phys. Lett. B213 (1988) 235.

    ADS  Google Scholar 

  32. S. Bethke, Z. Kunszt, D.E. Soper and W.J. Stirling, Nucl. Phys. B370 (1992) 310, ENucl. Phys. B523 (1998) 681.

    Google Scholar 

  33. E.R. Berger and O. Nachtmann, Eur. Phys. J. C7 (1999) 459.

    ADS  Google Scholar 

  34. S. Bethke, J. Phys. G26 (2000) R27.

    ADS  Google Scholar 

  35. J. Bijnens, Int. J. Mod. Phys. 8A (1993) 3045.

    ADS  Google Scholar 

  36. J. Bijnens, G. Ecker and J. Gasser, Chiral Perturbation Theory in The 2nd DA&NE Phys. Handbook, eds. L. Maiani, G. Pancheri and N. Paver (Frascati, 1994) p. 125.

    Google Scholar 

  37. J. Bijnens, J. Prades and E. de Rafael, Phys. Lett. B348 (1995) 226.

    ADS  Google Scholar 

  38. J.D. Bjorken, Phys. Rev. 179 (1969) 1547.

    ADS  Google Scholar 

  39. J.D. Bjorken Phys. Rev. 148 (1966) 1467 and

    ADS  Google Scholar 

  40. J.D. Bjorken Phys. Rev. D1 (1970) 1376.

    ADS  Google Scholar 

  41. R.C. Brower, K.N. Orginos and Ch.-I Tan, Phys. Rev. D55 (1997) 6313.

    ADS  Google Scholar 

  42. A. Brandenburg et al., Phys. Lett. B468 (1999) 168.

    ADS  Google Scholar 

  43. S. Catani, Yu.L. Dokshitzer, M. Olsson, G. Turnok and B.R. Webber, Phys. Lett. B269 (1991) 432.

    ADS  Google Scholar 

  44. S. Capitani et al. (ALPHA Coll.), Nucl. Phys. B544 (1999) 669.

    ADS  Google Scholar 

  45. K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Phys. Lett. 85B (1979) 277.

    ADS  Google Scholar 

  46. K.G. Chetyrkin, Phys. Lett. B404 (1997) 161.

    ADS  Google Scholar 

  47. F.E. Close, Nucl. Phys. B (Proc. Suppl.) 63 (1998) 28.

    ADS  Google Scholar 

  48. S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888.

    ADS  Google Scholar 

  49. J.C. Collins and M.J. Perry, Phys. Rev. Lett. 34 (1975) 1353.

    ADS  Google Scholar 

  50. B. Cox, Dimuon Production in Hadronic Interactions in Proceedings of the 21st International Conference on High Energy Physics, J. Phys. Suppl. (France) 43, eds. P. Petiau and M. Porneuf (Paris, 1982) p. C3–140.

    Google Scholar 

  51. J.C. Collins, Renormalization, (Cambridge University Press, Cambridge, 1984).

    MATH  Google Scholar 

  52. J.C. Collins, D.E. Soper and G. Sterman, Factorization of Hard Processes in QCD in Perturbative Quantum Chromodynamics, ed. A.H. Mueller (Singapore, 1989) p. 1.

    Google Scholar 

  53. G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175 (1980) 27.

    ADS  Google Scholar 

  54. G. Curci and M. Greco, Phys. Lett. 92B (1980) 175.

    ADS  Google Scholar 

  55. A. de Rujula, J. Ellis, E.G. Floratos and M.K. Gaillard, Nucl. Phys. B138 (1978) 387.

    ADS  Google Scholar 

  56. P.A.M. Dirac, Proc. Roy. Soc. A133 (1931) 60.

    ADS  Google Scholar 

  57. P.A.M. Dirac, Phys. Rev. 74 (1948) 817.

    MATH  ADS  MathSciNet  Google Scholar 

  58. J.A. Dixon and J.C. Taylor, Nucl. Phys. B78 (1974) 552.

    ADS  Google Scholar 

  59. H. Dilger, Phys. Lett. B294 (1992) 263.

    ADS  Google Scholar 

  60. H. Dilger and H. Joos, Nucl. Phys. B (Proc. Suppl.) B34 (1994) 195.

    ADS  Google Scholar 

  61. A. Di Giacomo et al., Nucl. Phys. B (Proc. Suppl.) B74 (1999) 405.

    ADS  Google Scholar 

  62. Yu.L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641.

    ADS  Google Scholar 

  63. Yu.L. Dokshitzer, D.I. Dyakonov and S.I. Troyan, Phys. Rept. 58 (1980) 269.

    ADS  Google Scholar 

  64. V.S. Dotsenko and S.N. Vergeles, Nucl. Phys. B169 (1980) 527.

    ADS  MathSciNet  Google Scholar 

  65. H.G. Dosch and Yu.A. Simonov, Phys. Lett. B205 (1988) 339.

    ADS  MathSciNet  Google Scholar 

  66. H.G. Dosch, E. Ferreira and A. Krämer, Phys. Rev. D50 (1994) 1992.

    ADS  Google Scholar 

  67. S.D. Drell and T.M. Yan, Phys. Rev. Lett. 24 (1970) 855.

    ADS  Google Scholar 

  68. J.-M. Drouffe and J.-B. Zuber, Phys. Rept. 102 (1983) 1.

    ADS  MathSciNet  Google Scholar 

  69. J.E. Duboscq et al. (CLEO Coll.), Phys. Rev. Lett. 76 (1996) 3898.

    ADS  Google Scholar 

  70. J. Ellis, M.K. Gaillard and G.G. Ross, Nucl. Phys. B111 (1976) 253.

    ADS  Google Scholar 

  71. R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider Physics, (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  72. A. Falk, M. Neubert and M. Luke, Nucl. Phys. B388 (1992) 363.

    ADS  Google Scholar 

  73. R.D. Field, Applications of Perturbative QCD, Frontieres in Physics Vol. 77, (Addison-Wesley, Redwood City, Calif., 1989).

    Google Scholar 

  74. E.G. Floratos, D.A. Ross and C.T. Sachrajda, Nucl. Phys. B129 (1977) 66.

    ADS  Google Scholar 

  75. E.G. Floratos, D.A. Ross and C.T. Sachrajda, Nucl. Phys. B152 (1979) 493.

    ADS  Google Scholar 

  76. M. Fleischer (H1 Coll.), Measurement of Neutral and Charged Current Cross Sections at High Q 2 in Proceedings of the 29th International Conference on High Energy Physics, eds. A. Astbury, D. Axen and J. Robinson (Singapore, etc., 1999) p. 803.

    Google Scholar 

  77. J.R. Forshaw and D.A. Ross, Quantum Chromodynamics and the Pomeron, (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  78. H. Fritzsch and M. Gell-Mann, Current Algebra: Quarks and what else? in Proceedings of the XVIth International Conference on High Energy Physics, eds. J.D. Jackson and A. Roberts (Chicago, 1972) p. 135.

    Google Scholar 

  79. H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. 47B (1973) 365.

    ADS  Google Scholar 

  80. W. Furmanski and R. Petronzio, Phys. Lett. 97B (1980) 437.

    ADS  Google Scholar 

  81. W. Furmanski and R. Petronzio, Z. Phys. C11 (1982) 293.

    ADS  Google Scholar 

  82. J. Gasser and H. Leutwyler, Ann. Phys. 158 (1984) 142.

    ADS  MathSciNet  Google Scholar 

  83. J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 465.

    ADS  Google Scholar 

  84. J. Garden et al. (ALPHA and UKQCD Coll.), Nucl. Phys. B571 (2000) 237.

    ADS  Google Scholar 

  85. M. Gell-Mann, Quarks in Elementary Particle Physics, Multiparticle Aspects, Acta Physica Austriaca, Suppl. IX, ed. P. Urban (Wien, New York, 1972) p. 733.

    Google Scholar 

  86. H. Georgi, Phys. Lett. B240 (1990) 447.

    ADS  Google Scholar 

  87. V.L. Ginzburg and L.D. Landau, JETP (USSR) 20 (1950) 1064.

    Google Scholar 

  88. M. Glück and E. Reya, Nucl. Phys. B145 (1978) 24.

    ADS  Google Scholar 

  89. M. Glück, E. Reya and A. Vogt, Eur. Phys. J. C5 (1998) 461.

    ADS  Google Scholar 

  90. L.P. Gor’kov, Sov. Phys. JETP 7 (1958) 505.

    MATH  MathSciNet  Google Scholar 

  91. A. Gonzales-Arroyo, C. Lopez and F.J. Yndurain, Nucl. Phys. B153 (1979) 161;

    ADS  Google Scholar 

  92. A. Gonzales-Arroyo and C. Lopez, Nucl. Phys. B166 (1980) 429.

    ADS  Google Scholar 

  93. S.G. Gorishny, A.L. Kataev and S.A. Larin, Phys. Lett. B259 (1991) 144.

    ADS  Google Scholar 

  94. S. Gottlieb, Nucl. Phys. B (Proc. Suppl.) 53 (1997) 155.

    ADS  Google Scholar 

  95. O.W. Greenberg, Phys. Rev. Lett. 13 (1964) 598.

    ADS  Google Scholar 

  96. V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438 and 675.

    Google Scholar 

  97. D.J. Gross and F. Wilczek, Phys. Rev. D8 (1973) 3633 and

    ADS  Google Scholar 

  98. D.J. Gross and F. Wilczek, Phys. Rev. D9 (1974) 980.

    ADS  Google Scholar 

  99. B. Grinstein, Nucl. Phys. B339 (1990) 253.

    ADS  MathSciNet  Google Scholar 

  100. M.Y. Han and Y. Nambu, Phys. Rev. 139B (1965) 1006.

    MathSciNet  Google Scholar 

  101. H. Hamber and G. Parisi, Phys. Rev. Lett. 47 (1981) 1792.

    ADS  Google Scholar 

  102. R. Hamberg, W.L. van Neerven and T. Matsuura, Nucl. Phys. B359 (1991) 343.

    ADS  Google Scholar 

  103. R. Hamberg and W.L. van Neerven, Nucl. Phys. B379 (1992) 143.

    ADS  Google Scholar 

  104. A. Hart and M. Teper, Phys. Rev. D58 (1998) 014504.

    ADS  Google Scholar 

  105. B. Humpert and W.L. van Neerven, Nucl. Phys. B184 (1981) 225.

    ADS  Google Scholar 

  106. K. Ishikawa, M. Teper and G. Schierholz, Phys. Lett. 110B (1982) 399.

    ADS  Google Scholar 

  107. N. Isgur and M. Wise, Phys. Lett. 232B (1989) 113 and 237B (1989) 527.

    Google Scholar 

  108. N. Isgur and M. Wise, Heavy Quark Symmetry in Heavy Flavours, eds. A. Buras and M. Lindner (World Scientific, 1992) p. 234.

    Google Scholar 

  109. S.D. Joglekar and B.W. Lee, Ann. Phys. 97 (1976) 160.

    ADS  MathSciNet  Google Scholar 

  110. L.P. Kadanoff, Phys. Rev. Lett. 23 (1969) 1430.

    ADS  Google Scholar 

  111. F. Karsch, Nucl. Phys. B (Proc. Suppl.) B83–84 (2000) 14.

    Google Scholar 

  112. E.W. Kolb and M.S. Turner, The Early Universe, (Addison Wesley, Redwood City, 1990).

    MATH  Google Scholar 

  113. K.-I. Kondo, Phys. Rev. D57 (1998) 7467.

    ADS  Google Scholar 

  114. G. Kramer, Theory of Jets in Electron-Positron Annihilation, Springer Tracts in Modern Physics 102, (Springer, Berlin, etc., 1984).

    Google Scholar 

  115. A.S. Kronfeld, G. Schierholz and U.-J. Wiese, Nucl. Phys. B293 (1987) 461.

    ADS  MathSciNet  Google Scholar 

  116. A.D. Krisch, Summary of the 13th International Symposium on High Energy Spin Physics in Proceedings of the 13th International Symposium on High Energy Spin Physics, eds. N.E. Tyurin et al. (Singapore, etc., 1999) p. 268.

    Google Scholar 

  117. Y. Kuramashi, Nucl. Phys. B (Proc. Suppl) B83–84 (2000) 24.

    Google Scholar 

  118. L.D. Landau, E.M. Lifschitz and L.P. Pitaevskii, Statistical Physics, Part 2, Sect. 45, (Oxford, Pergamon Press, 1980).

    Google Scholar 

  119. S.A. Larin, P. Nogueira, T. van Ritbergen and J.A.M. Vermaseren, Nucl. Phys. B492 (1997) 338.

    ADS  Google Scholar 

  120. H.L. Lai et al. (CTEQ Coll.), Eur. Phys. J. C12 (2000) 375.

    ADS  Google Scholar 

  121. H. Leutwyler and M. Roos, Z. Phys. C25 (1984) 91.

    ADS  Google Scholar 

  122. E. Leader and M. Anselmino, Z. Phys. C41 (1988) 239.

    Google Scholar 

  123. H. Leutwyler, Chiral Effective Lagrangians in Recent Aspects of Quantum Fields, eds. H. Mitter and H. Gausterer (Berlin, etc., 1991) p. 1.

    Google Scholar 

  124. P. Lepage and P.B. Mackenzie, Phys. Rev. D48 (1993) 2250.

    ADS  Google Scholar 

  125. H. Leutwyler, Ann. Phys. 235 (1994) 165.

    ADS  MathSciNet  Google Scholar 

  126. H. Leutwyler, Light Quark Effective Theory in Effective Theories and Fundamental Interactions, Proceedings of the International School of Subnuclear Physics, Erice, 1996, ed. A. Zichichi (Singapore, 1996) p. 53.

    Google Scholar 

  127. H. Leutwyler, Phys. Lett. B378 (1996) 313.

    ADS  Google Scholar 

  128. L.N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 95.

    Google Scholar 

  129. C.H. Llewellyn Smith, Jets and QCD in Facts and Prospects in Gauge Theories, Acta Physica Austriaca, Suppl. XIX, ed. P. Urban (Wien, New York, 1978) p. 331.

    Google Scholar 

  130. F. London, Superfluids, Vol. 1, (New York, John Wiley & Sons, 1950).

    Google Scholar 

  131. M. Lüscher, K. Symanzik and P. Weisz, Nucl. Phys. B173 (1980) 365.

    ADS  Google Scholar 

  132. M. Luke, Phys. Lett. B252 (1990) 447.

    ADS  Google Scholar 

  133. M. Lüscher, R. Sommer, P. Weisz and U. Wolff, Nucl. Phys. B389 (1993) 247.

    ADS  Google Scholar 

  134. M. Lüscher, Advanced Lattice QCD in Probing the Standard Model of Particle Interactions, Les Houches 1997, eds. R. Gupta et al. (Amsterdam, 1999) p. 229.

    Google Scholar 

  135. S. Mandelstam, Phys. Rept. 23 (1976) 307.

    ADS  Google Scholar 

  136. W. Marciano, Phys. Rev. D29 (1984) 580.

    ADS  Google Scholar 

  137. T. Matsuura, R. Hamberg and W.L. van Neerven, Nucl. Phys. B345 (1990) 345.

    Google Scholar 

  138. T. Mannel, Rept. Prog. Phys. 60 (1997) 1113.

    ADS  Google Scholar 

  139. P.B. Mackenzie, Nucl. Phys. B (Proc. Suppl.) 53 (1997) 23.

    ADS  Google Scholar 

  140. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Eur. Phys. J. C4 (1998) 463.

    ADS  Google Scholar 

  141. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Eur. Phys. J. C14 (2000) 133.

    ADS  Google Scholar 

  142. R. Mertig and W.L. van Neerven, Z. Phys. C70 (1996) 637.

    Google Scholar 

  143. C. Michael and M. Teper, Nucl. Phys. B314 (1989) 347.

    ADS  Google Scholar 

  144. S. Moch and J.A.M. Vermaueren, Nucl. Phys. B573 (2000) 853.

    ADS  Google Scholar 

  145. G. Münster, Nucl. Phys. B180 (1981) 23.

    ADS  Google Scholar 

  146. O. Nachtmann and W. Wetzel, Nucl. Phys. B187 (1981) 333.

    ADS  Google Scholar 

  147. S. Narison, Phys. Rept. 84 (1982) 263.

    ADS  Google Scholar 

  148. M. Neubert, Phys. Rept. 245 (1994) 259.

    ADS  Google Scholar 

  149. M. Neubert, B decays and the Heavy Quark Expansion in Heavy Flavours II, eds. A.J. Buras and M. Lindner (World Scientific, 1998) p. 239.

    Google Scholar 

  150. H.B. Nielsen and P. Olesen, Nucl. Phys. B61 (1973) 45.

    ADS  Google Scholar 

  151. K. Osterwalder and E. Seiler, Ann. Phys. 110 (1978) 440.

    ADS  MathSciNet  Google Scholar 

  152. R.D. Parks (ed.), Superconductivity, (New York, etc., Marcel Dekker, 1969).

    Google Scholar 

  153. G. Parisi, Phys. Lett. 90B (1980) 295.

    ADS  Google Scholar 

  154. G. Parisi, Recent Progress in Gauge Theories in High-Energy Physics 1980 (XXth Int. Conf. Madison), eds. L. Durand and L.G. Pondrom (New York, 1981) p. 1531.

    Google Scholar 

  155. D.E. Groom et al. (Particle Data Group), Eur. Phys. J. C15 (2000) 1.

    Google Scholar 

  156. R. Petronzio, Nucl. Phys. B (Proc. Suppl.) B83–84 (2000) 136.

    Google Scholar 

  157. A. Pich, Rept. Prog. Phys. 58 (1995) 563.

    ADS  Google Scholar 

  158. H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.

    ADS  Google Scholar 

  159. H.D. Politzer, Phys. Rev. 14C (1974) 129.

    Google Scholar 

  160. H.D. Politzer, Nucl. Phys. B129 (1977) 301.

    ADS  Google Scholar 

  161. T. van Ritbergen, J.A.M Vermaseren and S.A. Larin, Phys. Lett. B400 (1997) 379.

    ADS  Google Scholar 

  162. A. Ringwald and F. Schrempp, Phys. Lett. B459 (1999) 249.

    ADS  Google Scholar 

  163. A. Ringwald and F. Schrempp, Theory and Phenomenology of Instantons at HERA in New Trends in HERA Physics, eds. G. Grindhammer, B. Kniehl and G. Kramer (Berlin, 2000) p. 203.

    Google Scholar 

  164. C.T. Sachrajda, Phys. Lett. 73B (1978) 185 and

    ADS  Google Scholar 

  165. C.T. Sachrajda, Phys. Lett. 76B (1978) 100.

    ADS  Google Scholar 

  166. J. Santiago and F.J. Yndurain, Nucl. Phys. B563 (1999) 45.

    ADS  Google Scholar 

  167. H. Satz, Rept. Prog. Phys. 63 (2000) 1511.

    ADS  Google Scholar 

  168. J. Schwinger, Phys. Rev. 125 (1962) 397,

    MATH  ADS  MathSciNet  Google Scholar 

  169. J. Schwinger, Phys. Rev. 128 (1962) 2425.

    MATH  ADS  MathSciNet  Google Scholar 

  170. K. Schilling, Nucl. Phys. B (Proc. Suppl.) B83–84 (2000) 140.

    Google Scholar 

  171. J. Shigemitsu, Nucl. Phys. B (Proc. Suppl.) 53 (1997) 16.

    ADS  Google Scholar 

  172. E. Shuryak, hep-ph/9909458.

    Google Scholar 

  173. D.A. Smith and M.J. Teper (UKQCD Coll.), Phys. Rev. D58 (1998) 014505.

    ADS  Google Scholar 

  174. R. Sommer, Nucl. Phys. B411 (1994) 839.

    ADS  Google Scholar 

  175. G. Sterman and S. Weinberg, Phys. Rev. Lett. 39 (1977) 1436.

    ADS  Google Scholar 

  176. G. Sterman et al., Rev. Mod. Phys. 67 (1995) 67.

    Google Scholar 

  177. L.R. Surguladze and M.A. Samuel, Phys. Rev. Lett. 66 (1991) 560.

    ADS  Google Scholar 

  178. H. Suganuma, S. Sasaki and H. Toki, Nucl. Phys. B435 (1995) 207.

    ADS  Google Scholar 

  179. E. Tarrach, Nucl. Phys. B183 (1981) 384.

    ADS  Google Scholar 

  180. O.V. Tarasov, Dubna report JINR-P2-82-900 (1982).

    Google Scholar 

  181. G.’t Hooft, Gauge Theories with Unißed Weak, Electromagnetic and Strong Interactions in High Energy Physics, ed. A. Zichichi (Bologna, 1976) p. 1225.

    Google Scholar 

  182. G.’t Hooft, Nucl. Phys. B190 (1981) 455.

    ADS  Google Scholar 

  183. G.’t Hooft, Physica Scripta 25 (1982) 133.

    ADS  Google Scholar 

  184. G.’t Hooft, Nucl. Phys. B254 (1985) 11.

    ADS  Google Scholar 

  185. A. Ukawa, Nucl. Phys. B (Proc. Suppl.) 30 (1993) 3.

    ADS  Google Scholar 

  186. P. van Baal, Global Issues in Gauge Fixing in Non-pertubative Approaches to Quantum Chromodynamics, ed. D. Diakonov (Gatchina, 1996) p. 4.

    Google Scholar 

  187. B. van den Heuvel, Nucl. Phys. B488 (1997) 282.

    ADS  Google Scholar 

  188. W.L. van Neerven and E.B. Zijlstra, Phys. Lett. B272 (1991) 127.

    ADS  Google Scholar 

  189. W.L. van Neerven and E.B. Zijlstra, Nucl. Phys. B382 (1992) 11.

    ADS  Google Scholar 

  190. W.L. van Neerven and A. Vogt, Nucl. Phys. B568 (2000) 263.

    ADS  Google Scholar 

  191. J.A.M Vermaseren, S.A. Larin and T. van Ritbergen, Phys. Lett. B405 (1997) 327.

    ADS  Google Scholar 

  192. W. Vogelsang, Nucl. Phys. B475 (1996) 47.

    ADS  Google Scholar 

  193. S. Weinberg, Phys. Rev. Lett. 17 (1966) 616.

    ADS  Google Scholar 

  194. S. Weinberg, Physica A96 (1979) 327.

    ADS  Google Scholar 

  195. D. Weingarten, Phys. Lett. 109B (1982) 57.

    ADS  MathSciNet  Google Scholar 

  196. D. Weingarten, Nucl. Phys. B (Proc. Suppl.) 53 (1997) 232.

    ADS  Google Scholar 

  197. K.G. Wilson, Phys. Rev. 179 (1969) 1499.

    ADS  MathSciNet  Google Scholar 

  198. K.G. Wilson, Phys. Rev. D10 (1974) 2445.

    ADS  Google Scholar 

  199. S.L. Wu, Phys. Rept. C107 (1984) 59.

    ADS  Google Scholar 

  200. U.K. Yang and A. Bodek, Eur. Phys. J. C13 (2000) 241.

    ADS  Google Scholar 

  201. F.J. Yndurain, The Theory of Quark and Gluon Interactions, (Springer Verlag, Berlin, etc., 1999) (third edition).

    MATH  Google Scholar 

  202. T. Yoshié, Nucl. Phys. B (Proc. Suppl.) 63 (1998) 3.

    ADS  Google Scholar 

  203. A. Zee, Phys. Rev. D8 (1973) 4038.

    ADS  Google Scholar 

  204. W. Zimmermann, Ann. Phys. 77 (1973) 536 and 570.

    ADS  Google Scholar 

  205. E.B. Zijlstra and W.L. van Neerven, Phys. Lett. B273 (1991) 476 and

    ADS  Google Scholar 

  206. E.B. Zijlstra and W.L. van Neerven, Phys. Lett. B297 (1992) 377.

    ADS  Google Scholar 

  207. E.B. Zijlstra and W.L. van Neerven, Nucl. Phys. B383 (1992) 525.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 B. G. Teubner Stuttgart/Leipzig/Wiesbaden

About this chapter

Cite this chapter

Böhm, M., Denner, A., Joos, H. (2001). Quantum Chromodynamics. In: Gauge Theories of the Strong and Electroweak Interaction. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-80160-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-80160-9_3

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-80162-3

  • Online ISBN: 978-3-322-80160-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics