Skip to main content
  • 194 Accesses

Zusammenfassung

Zeichnungen sind nicht nur ein ansprechendes, sondern auch ein sehr effektives Mittel, um die durch einen Graphen repräsentierte Information zu vermitteln. Der geeignete Entwurf solcher Zeichnungen ist jedoch schon bei kleinen Graphen eine schwierige und zeitraubende Arbeit, die nach Automatisierung geradezu ruft. Wir leiten daher eine Formalisierung des Problems her und stellen anhand von Anwendungen aus der Soziologie und dem Verkehrswesen Möglichkeiten des automatischen Zeichnens dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. E. H. L. Aarts und J. H. M. Korst. Simulated Annealing and Boltzmann Machines. Wiley, 1989.

    Google Scholar 

  2. S. D. Berkowitz. An Introduction to Structural Analysis: The Network Approach to Scocial Research. Butterworths, 1982.

    Google Scholar 

  3. J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B, 48(3):259–302, 1986.

    MathSciNet  MATH  Google Scholar 

  4. F. J. Brandenburg (ed.). Proceedings of the 3rd International Symposium on Graph Drawing (GD’ 95), Lecture Notes in Computer Science, Nr. 1027. Springer, 1996.

    Google Scholar 

  5. F. J. Brandenburg, M. Himsolt und C. Rohrer. An experimental comparison of force-directed and randomized graph drawing algorithms. In [4], Seiten 76-87.

    Google Scholar 

  6. U. Brandes, P. Kenis, J. Raab, V. Schneider und D. Wagner. Explorations into the visualization of policy networks. Erscheint in Journal of Theoretical Politics, 11(1), 1999.

    Google Scholar 

  7. U. Brandes und D. Wagner. A Bayesian paradigm for dynamic graph layout. In [16], Seiten 236-247.

    Google Scholar 

  8. U. Brandes und D. Wagner. Random field models for graph layout. Konstanzer Schriften in Mathematik und Informatik, Nr. 33. Universität Konstanz, April 1997.

    Google Scholar 

  9. U. Brandes und D. Wagner. Dynamic grid embedding with few bends and changes. In K.-Y. Chwa und O. H. Ibarra (eds.), Proceedings of the 9th Annual International Symposium on Algorithms and Computation (ISAAC’ 98), Lecture Notes in Computer Science, Nr. 1533, Seiten 89-98. Springer, 1998.

    Google Scholar 

  10. U. Brandes und D. Wagner. Using graph layout to visualize train interconnection data. Erscheint in [47].

    Google Scholar 

  11. G. R. Brightwell und E. R. Scheinerman. Representations of planar graphs. SIAM Journal on Discrete Mathematics, 6(2):214–229, Mai 1993.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Bruß und A. Frick. Fast interactive 3-D graph visualization. In [4], Seiten 99-110.

    Google Scholar 

  13. R. S. Burt. Toward a Structural Theory of Action: Network Models of Social Structure, Perception, and Action. Academic Press, 1982.

    Google Scholar 

  14. I. F. Cruz und J. P. Twarog. 3D graph drawing with simulated annealing. In [4], Seiten 162-165.

    Google Scholar 

  15. R. Davidson und D. Harel. Drawing graphs nicely using simulated annealing. ACM Transactions on Graphics, 15(4):301–331, 1996.

    Article  Google Scholar 

  16. G. Di Battista (ed.). Proceedings of the 5th International Symposium on Graph Drawing (GD’ 97), Lecture Notes in Computer Science, Nr. 1353. Springer, 1997.

    Google Scholar 

  17. G. Di Battista, P. Eades, H. de Fraysseix, P. Rosenstiehl und R. Tamassia, (eds.). Proceedings of the ALCOM International Workshop on Graph Drawing (GD’ 93), 1993. ftp.cs.brown.edu/pub/gd94/gd-92-93/gd93-v2.ps.Z.

    Google Scholar 

  18. G. Di Battista, P. Eades, R. Tamassia und I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

    Google Scholar 

  19. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.

    MathSciNet  Google Scholar 

  20. P. Eades, J. Marks und S. C. North. Graph-drawing contest report. In [16], Seiten 438-445.

    Google Scholar 

  21. C. J. Fisk, D. L. Caskey und L. E. West. ACCEL: Automated circuit card etching layout. Proceedings of the IEEE, 55(11):1971–1982, November 1967.

    Article  Google Scholar 

  22. L. C. Freeman. Centrality in social networks: Conceptual clarification. Social Networks, 1:215–239,1979.

    Article  Google Scholar 

  23. A. Frick, A. Ludwig und H. Mehldau. A fast adaptive layout algorithm for undirected graphs. In [40], Seiten 388-403.

    Google Scholar 

  24. T. M. J. Fruchterman und E. M. Reingold. Graph-drawing by force-directed placement. Software—Practice and Experience, 21(11):1129–1164, 1991.

    Article  Google Scholar 

  25. A. Garg. On drawing angle graphs. In [40], Seiten 84-95.

    Google Scholar 

  26. M. R. Garey und D. S. Johnson. Crossing Number is NP-Complete. SIAM Journal on Algebraic Discrete Methods, 4(3):312–316, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. S. Johnson. The NP-completeness column: An ongoing guide. Journal of Algorithms, 3:89–99, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Kamada und S. Kawai. An algorithm for drawing general undirected graphs. Information Processing Letters, 31:7–15, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Kamps, J. Kleinz und J. Read. Constraint-based spring-model algorithms for graph layout. In [4], Seiten 349-360.

    Google Scholar 

  30. S. Kirckpatrick, C. D. Gelatt und M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, Mai 1983.

    Article  MathSciNet  Google Scholar 

  31. Donald E. Knuth. Computer Drawn Flowcharts. Communications of the ACM, 6(9):555–563, 1963

    Article  Google Scholar 

  32. J. A. McDonald und J. Pedersen. Geometric abstractions for constrained optimization of layouts. In A. Buja und P. A. Tukey (eds.), Computing and Graphics in Statistics, The IMA Volumes in Mathematics and its Applications, Nr. 36, pages 95–105. Springer, 1991.

    Google Scholar 

  33. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller und E. Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6): 1087–1092, Juni 1953.

    Article  Google Scholar 

  34. S. C. North (ed.). Proceedings of the 4th International Symposium on Graph Drawing (GD’ 96), Lecture Notes in Computer Science, Nr. 1190. Springer, 1996.

    Google Scholar 

  35. W. D. Niven (ed.). The Scientific Papers of James Clark Maxwell, Dover Publications, New York, 1965.

    Google Scholar 

  36. J. F. Padgett und C. K. Ansell. Robust action and the rise of the Medici, 1400–1434. American Journal of Sociology 98:1259–1319, 1993.

    Article  Google Scholar 

  37. N. R. Quinn und M. A. Breuer. A force directed component placement procedure for printed circuit boards. IEEE Transactions on Circuits and Systems, 26(6):377–388, 1979.

    Article  MATH  Google Scholar 

  38. J. Scott. Social Network Analysis: A Handbook. Sage Publications, 1991.

    Google Scholar 

  39. K. Sugiyama und K. Misue. A simple and unified method for drawing graphs: Magnetic-spring algorithm. In [40], Seiten 364-375.

    Google Scholar 

  40. R. Tamassia und I. G. Tollis (eds.). Proceedings of the 2nd International Symposium on Graph Drawing (GD’ 94), Lecture Notes in Computer Science, Nr. 894. Springer, 1995.

    Google Scholar 

  41. E. R. Tufte. Envisioning Information. Graphics Press, 1990.

    Google Scholar 

  42. D. Tunkelang. A practical approach to drawing undirected graphs. Technical Report CMU-CS-94-161, School of Computer Science, Carnegie Mellon University, Juni 1994.

    Google Scholar 

  43. W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, Third Series, 13:743–768, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  44. P. J. M. van Laarhoven und E. H. L. Aarts. Simulated Annealing: Theory and Applications. Reidel, 1988.

    Google Scholar 

  45. S. Wasserman und K. Faust. Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.

    Google Scholar 

  46. R. Webber. Finding the Best Viewpoint for Three-Dimensional Graph Drawings. PhD thesis, University of Newcastle, 1998.

    Google Scholar 

  47. S. H. Whitesides (ed.). Proceedings of the 6th International Symposium on Graph Drawing (GD’ 98), Lecture Notes in Computer Science, Nr. 1547. Springer, 1998.

    Google Scholar 

  48. G. Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo Methods, Applications of Mathematics, Nr. 27. Springer, 1995.

    Google Scholar 

  49. D. Wood. On higher-dimensional orthogonal graph drawing. Technical Report 96/286, Department of Computer Science, Monash University, November 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patrick Horster

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Brandes, U., Wagner, D. (1999). Über das Zeichnen von Graphen. In: Horster, P. (eds) Angewandte Mathematik, insbesondere Informatik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-83092-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-83092-0_5

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-05720-6

  • Online ISBN: 978-3-322-83092-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics